Skip to main content

Advertisement

Log in

The identification of three sizes of core proteins during the establishment of persistent hepatitis C virus infection in vitro

  • Research Article
  • Published:
Virologica Sinica

Abstract

Similar to Hepatitis C virus (HCV) infection in humans, HCVcc infection can also result in persistent and chronic infection. The core protein is a variable protein and exists in several sizes. Some sizes of core proteins have been reported to be related to chronic HCV infection. To study the possible role of the core protein in persistent HCV infection, a persistent HCVcc infection was established, and the expression of the core protein was analysed over the course of the infection. The results show that there are three sizes of core proteins (p24, p21 and p19) expressed during the establishment of persistent HCVcc infection. Of these, the p21 core protein is the mature form of the HCV core protein. The p24 core protein is the phosphorylated form of p21. The p19 core protein appears to be a functional by-product generated during the course of infection. These three core proteins are all localized in the cytoplasm and can be encapsidated into the HCV virion. The appearance of the p19 and p24 core proteins might be related to acute HCVcc infection and chronic infection respectively and may play an important role in the pathology of a HCV infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akuta N, Suzuki F, Hirakawa M, Kawamura Y, Yatsuji H, Sezaki H, Suzuki Y, Hosaka T, Kobayashi M, Saitoh S, Arase Y, Ikeda K, Chayama K, Nakamura Y, and Kumada H. 2010. Amino acid substitution in hepatitis C virus core region and genetic variation near the interleukin 28B gene predict viral response to telaprevir with peginterferon and ribavirin. Hepatology, 52: 421–429.

    Article  PubMed  CAS  Google Scholar 

  • Akuta N, Suzuki F, Hirakawa M, Kawamura Y, Yatsuji H, Sezaki H, Suzuki Y, Hosaka T, Kobayashi M, Saitoh S, Arase Y, Ikeda K, Chayama K, Nakamura Y, and Kumada H. 2012. Amino Acid Substitution in HCV Core Region and Genetic Variation near the IL28B Gene Affect Viral Dynamics during Telaprevir, Peginterferon and Ribavirin Treatment. Intervirology, 55: 417–425.

    Article  PubMed  CAS  Google Scholar 

  • Alter M J. 1997. Epidemiology of hepatitis C. Hepatology, 26: 62S–65S.

    Article  PubMed  CAS  Google Scholar 

  • Blaney J E, Jr., Johnson D H, Manipon G G, Firestone C Y, Hanson C T, Murphy B R, and Whitehead S S. 2002. Genetic basis of attenuation of dengue virus type 4 small plaque mutants with restricted replication in suckling mice and in SCID mice transplanted with human liver cells. Virology, 300: 125–139.

    Article  PubMed  CAS  Google Scholar 

  • Eng F J, Walewski J L, Klepper A L, Fishman S L, Desai S M, McMullan L K, Evans M J, Rice C M, and Branch A D. 2009. Internal Initiation Stimulates Production of p8 Minicore, a Member of a Newly Discovered Family of Hepatitis C Virus Core Protein Isoforms. J Virol, 83: 3104–3114.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Sastre A, Tellinghuisen T L, Foss K L, and Treadaway J. 2008. Regulation of Hepatitis C Virion Production via Phosphorylation of the NS5A Protein. PLoS Pathogens, 4: e1000032.

    Article  Google Scholar 

  • Heller T. 2005. An in vitro model of hepatitis C virion production. Proc Natl Acad Sci USA, 102: 2579–2583.

    Article  PubMed  CAS  Google Scholar 

  • Houghton M, and Abrignani S. 2005. Prospects for a vaccine against the hepatitis C virus. Nature, 436: 961–966.

    Article  PubMed  CAS  Google Scholar 

  • Hussy P, Langen H, Mous J, and Jacobsen H. 1996. Hepatitis C virus core protein: carboxy-terminal boundaries of two processed species suggest cleavage by a signal peptide peptidase. Virology, 224: 93–104.

    Article  PubMed  CAS  Google Scholar 

  • Kopp M, Murray C L, Jones C T, and Rice C M. 2010. Genetic analysis of the carboxy-terminal region of the hepatitis C virus core protein. J Virol, 84: 1666–1673.

    Article  PubMed  CAS  Google Scholar 

  • Lai M M, and Ware C F. 2000. Hepatitis C virus core protein: possible roles in viral pathogenesis. Curr Top Microbiol Immunol, 242: 117–134.

    Article  PubMed  CAS  Google Scholar 

  • McLauchlan J. 2000. Properties of the hepatitis C virus core protein: a structural protein that modulates cellular processes. J Viral Hepat, 7: 2–14.

    Article  PubMed  CAS  Google Scholar 

  • McLauchlan J, Lemberg M K, Hope G, and Martoglio B. 2002. Intramembrane proteolysis promotes trafficking of hepatitis C virus core protein to lipid droplets. EMBO J, 21: 3980–3988.

    Article  PubMed  CAS  Google Scholar 

  • Moriya K, Yotsuyanagi H, Shintani Y, Fujie H, Ishibashi K, Matsuura Y, Miyamura T, and Koike K. 1997. Hepatitis C virus core protein induces hepatic steatosis in transgenic mice. J Gen Virol, 78( Pt 7): 1527–1531.

    PubMed  CAS  Google Scholar 

  • Moriya K, Fujie H, Shintani Y, Yotsuyanagi H, Tsutsumi T, Ishibashi K, Matsuura Y, Kimura S, Miyamura T, and Koike K. 1998. The core protein of hepatitis C virus induces hepatocellular carcinoma in transgenic mice. Nat Med, 4: 1065–1067.

    Article  PubMed  CAS  Google Scholar 

  • Moriya K, Nakagawa K, Santa T, Shintani Y, Fujie H, Miyoshi H, Tsutsumi T, Miyazawa T, Ishibashi K, Horie T, Imai K, Todoroki T, Kimura S, and Koike K. 2001. Oxidative stress in the absence of inflammation in a mouse model for hepatitis C virus-associated hepatocarcinogenesis. Cancer Res, 61: 4365–4370.

    PubMed  CAS  Google Scholar 

  • Okamoto K, Mori Y, Komoda Y, Okamoto T, Okochi M, Takeda M, Suzuki T, Moriishi K, and Matsuura Y. 2008. Intramembrane Processing by Signal Peptide Peptidase Regulates the Membrane Localization of Hepatitis C Virus Core Protein and Viral Propagation. J Virol, 82: 8349–8361.

    Article  PubMed  CAS  Google Scholar 

  • Okuda M, Li K, Beard M R, Showalter L A, Scholle F, Lemon S M, and Weinman S A. 2002. Mitochondrial injury, oxidative stress, and antioxidant gene expression are induced by hepatitis C virus core protein. Gastroenterology, 122: 366–375.

    Article  PubMed  CAS  Google Scholar 

  • Pawlotsky J M. 2004. Pathophysiology of hepatitis C virus infection and related liver disease. Trends Microbiol, 12: 96–102.

    Article  PubMed  CAS  Google Scholar 

  • Sauter D, Himmelsbach K, Kriegs M, Carvajal Yepes M, and Hildt E. 2009. Localization determines function: N-terminally truncated NS5A fragments accumulate in the nucleus and impair HCV replication. J Hepatol, 50: 861–871.

    Article  PubMed  CAS  Google Scholar 

  • Shih C M, Chen C M, Chen S Y, and Lee Y H. 1995. Modulation of the trans-suppression activity of hepatitis C virus core protein by phosphorylation. J Virol, 69: 1160–1171.

    PubMed  CAS  Google Scholar 

  • Suzuki R, Matsuura Y, Suzuki T, Ando A, Chiba J, Harada S, Saito I, and Miyamura T. 1995. Nuclear localization of the truncated hepatitis C virus core protein with its hydrophobic C terminus deleted. J Gen Virol, 76( Pt 1): 53–61.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki R, Sakamoto S, Tsutsumi T, Rikimaru A, Tanaka K, Shimoike T, Moriishi K, Iwasaki T, Mizumoto K, Matsuura Y, Miyamura T, and Suzuki T. 2005. Molecular determinants for subcellular localization of hepatitis C virus core protein. J Virol, 79: 1271–1281.

    Article  PubMed  CAS  Google Scholar 

  • Wakita T, Pietschmann T, Kato T, Date T, Miyamoto M, Zhao Z, Murthy K, Habermann A, Kräusslich H-G, Mizokami M, Bartenschlager R, and Liang T J. 2005. Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nature Medicine, 11: 791–796.

    Article  PubMed  CAS  Google Scholar 

  • Walewski J L, Keller T R, Stump D D, and Branch A D. 2001. Evidence for a new hepatitis C virus antigen encoded in an overlapping reading frame. RNA, 7: 710–721.

    Article  PubMed  CAS  Google Scholar 

  • Yeh C T, Lo S Y, Dai D I, Tang J H, Chu C M, and Liaw Y F. 2000. Amino acid substitutions in codons 9–11 of hepatitis C virus core protein lead to the synthesis of a short core protein product. J Gastroenterol Hepatol, 15: 182–191.

    Article  PubMed  CAS  Google Scholar 

  • Zhong J. 2005. Robust hepatitis C virus infection in vitro. Proceedings of the National Academy of Sciences, 102: 9294–9299.

    Article  CAS  Google Scholar 

  • Zhong J, Gastaminza P, Chung J, Stamataki Z, Isogawa M, Cheng G, McKeating J A, and Chisari F V. 2006. Persistent Hepatitis C Virus Infection In Vitro: Coevolution of Virus and Host. J Virol, 80: 11082–11093.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xulin Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liao, Q., Tian, J., Wu, Y. et al. The identification of three sizes of core proteins during the establishment of persistent hepatitis C virus infection in vitro . Virol. Sin. 28, 129–135 (2013). https://doi.org/10.1007/s12250-013-3296-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12250-013-3296-7

Keywors

Navigation