Skip to main content

Advertisement

SpringerLink
  • Log in
  1. Home
  2. Virologica Sinica
  3. Article
Mutagenesis of D80-82 and G83 residues in West Nile Virus NS2B: Effects on NS2B-NS3 activity and viral replication
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

A positively charged surface patch on the pestivirus NS3 protease module plays an important role in modulating NS3 helicase activity and virus production

31 March 2021

Fengwei Zheng, Weicheng Yi, … Zishu Pan

Structure and function of the parvoviral NS1 protein: a review

17 October 2022

Qianqian Xie, Jigui Wang, … Weiquan Liu

A Single Mutation in the Cryptic AUG (cAUG) Affects In Vitro Translation and Replication Efficiencies and In Vivo Virulence of Coxsackievirus B3 (CVB3)

16 August 2022

Ahlem Ben Youssef, Jawhar Gharbi, … Manel Ben M’hadheb

A nuanced role of the small loop of hepatitis B virus small envelope protein in virion morphogenesis and secretion

01 December 2021

Chih-Hsu Chang, Shu-Fan Chou & Chiaho Shih

Genetic variations on 31 and 450 residues of influenza A nucleoprotein affect viral replication and translation

06 January 2020

Su-Jhen Hung, Yin-Mei Hsu, … Jen-Ren Wang

Partial structure, dampened mobility, and modest impact of a His tag in the SARS-CoV-2 Nsp2 C-terminal region

11 October 2021

Miguel Mompeán, Miguel Á. Treviño & Douglas V. Laurents

Changes in RNA secondary structure affect NS1 protein expression during early stage influenza virus infection

21 December 2019

Irina Baranovskaya, Mariia Sergeeva, … Andrey Vasin

Identification of two residues within the NS1 of H7N9 influenza A virus that critically affect the protein stability and function

01 October 2018

Song Wang, Lanlan Zhang, … Ji-Long Chen

A novel amino acid site of N protein could affect the PRRSV-2 replication by regulating the viral RNA transcription

11 May 2022

Hua Deng, Ning Xin, … Yao Chen

Download PDF
  • Research Article
  • Published: 16 January 2013

Mutagenesis of D80-82 and G83 residues in West Nile Virus NS2B: Effects on NS2B-NS3 activity and viral replication

  • Fan Jia1,
  • Jingjing Fan1,
  • Bo Zhang1 &
  • …
  • Zhiming Yuan1 

Virologica Sinica volume 28, pages 16–23 (2013)Cite this article

  • 442 Accesses

  • 4 Citations

  • Metrics details

Abstract

Flaviviral NS2B is a required cofactor for NS3 serine protease activity and plays an important role in promoting functional NS2B-NS3 protease configuration and maintaining critical interactions with protease catalysis substrates. The residues D80DDG in West Nile virus (WNV) NS2B are important for protease activity. To investigate the effects of D80DDG in NS2B on protease activity and viral replication, the negatively charged region D80DD and the conserved residue G83 of NS2B were mutated (D80DD/E80EE, D80DD/K80KK, D80DD/A80AA, G83F, G83S, G83D, G83K, and G83A), and NS3 D75A was designated as the negative control. The effects of the mutations on NS2B-NS3 activity, viral translation, and viral RNA replication were analyzed using kinetic analysis of site-directed enzymes and a transient replicon assay. All substitutions resulted in significantly decreased enzyme activity and blocked RNA replication. The negative charge of D80DD is not important for maintaining NS2B function, but side chain changes in G83 have dramatic effects on protease activity and RNA replication. These results demonstrate that NS2B is important for viral replication and that D80DD and G83 substitutions prevent replication; they will be useful for understanding the relationship between NS2B and NS3.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  • Chappell K J, Nall T A, Stoermer M J, Fang N X, Tyndall J D, Fairlie D P, Young P R. 2005. Site-directed Mutagenesis and Kinetic Studies of the West Nile Virus NS3 Protease Identify Key Enzyme-Substrate Interactions. J Biol Chem, 280(4):2896–2903.

    Article  PubMed  CAS  Google Scholar 

  • Chappell K J, Stoermer M J, Fairlie D P, Young P R. 2008. Mutagenesis of the West Nile virus NS2B cofactor domain reveals two regions essential for protease activity. J Gen Virol, 89(Pt4):1010–1014.

    Article  PubMed  CAS  Google Scholar 

  • Chambers T J, Nestorowicz A, Amberg S M, Rice C M. 1993. Mutagenesis of the yellow fever virus NS2B protein: effects on proteolytic processing, NS2B-NS3 complex formation, and viral replication. J Virol, 67(11):6797–6807.

    PubMed  CAS  Google Scholar 

  • Ciota A T, Lovelace A O, Ngo K A, Le A N, Maffei J G, Franke M A, Payne A F, Jones S A, Kauffman E B, Kramer L D. 2007. Cell-specific adaptation of two flaviviruses following serial passage in mosquito cell culture. Virology, 357(2):165–174.

    Article  PubMed  CAS  Google Scholar 

  • D’Arcy A, Chaillet M, Schiering N, Villard F, Lim S P, Lefeuvre P, Erbel P. 2006. Purification and crystallization of dengue and West Nile virus NS2B-NS3 complexes. Acta Crystallogr Sect F Struct Biol Cryst Commun, 62(Pt2):157–162.

    Article  PubMed  Google Scholar 

  • Droll D A, Krishna Murthy H M, Chambers T J. 2000. Yellow fever virus NS2B-NS3 protease: charged-to-alanine mutagenesis and deletion analysis define regions important for protease complex formation and function. Virology, 275(2):335–347.

    Article  PubMed  CAS  Google Scholar 

  • Erbel P, Schiering N, D’Arcy A, Renatus M, Kroemer M, Lim S P, Yin Z, Keller T H, Vasudevan S G, Hommel U. 2006. Structural basis for the activation of flaviviral NS3 proteases from dengue and West Nile virus. Nat Struct Mol Biol, 13(4):372–373.

    Article  PubMed  CAS  Google Scholar 

  • Falgout B, Miller R H, Lai C J. 1993. Deletion analysis of dengue virus type 4 nonstructural protein NS2B: identification of a domain required for NS2B-NS3 protease activity. J Virol, 67(4): 2034–2042.

    PubMed  CAS  Google Scholar 

  • Falgout B, Pethel M, Zhang Y M, Lai C J. 1991. Both nonstructural proteins NS2B and NS3 are required for the proteolytic processing of dengue virus nonstructural proteins. J Virol, 65(5):2467–2475.

    PubMed  CAS  Google Scholar 

  • Jia F, Zou G, Fan J J, Yuan Z M. 2010. Identification of palmatine as an inhibitor of West Nile virus. Arch Virol, 155(8): 1325–1329.

    Article  PubMed  CAS  Google Scholar 

  • Johnston P A, Phillips J, Shun T Y, Shinde S, Lazo J S, Huryn D M, Myers M C, Ratnikov B I, Smith J W, Su Y, Dahl R, Cosford N D, Shiryaev S A, Strongin A Y. 2007. HTS Identifies Novel and Specific Uncompetitive Inhibitors of the Two-Component NS2B-NS3 Proteinase of West Nile Virus. Assay Drug Dev Technol, 5(6):737–750.

    Article  PubMed  CAS  Google Scholar 

  • Leung D, Schroder K, White H, Fang N X, Stoermer M J, Abbenante G, Martin J L, Young P R, Fairlie D P. 2001. Activity of recombinant dengue 2 virus NS3 protease in the presence of a truncated NS2B co-factor, small peptide substrates, and inhibitors. J Biol Chem, 276(49):45762–45771.

    Article  PubMed  CAS  Google Scholar 

  • Lin C W, Huang H D, Shiu S Y, Chen W J, Tsai M H, Huang S H, Wan L, Lin Y J. 2007. Functional determinants of NS2B for activation of Japanese encephalitis virus NS3 protease. Virus Res, 127(1):88–94.

    Article  PubMed  CAS  Google Scholar 

  • Lo M K, Tilgner M, Bernard K A, Shi P Y. 2003. Functional analysis of mosquito-borne flavivirus conserved sequence elements within 3’ untranslated region of West Nile virus by use of a reporting replicon that differentiates between viral translation and RNA replication. J Virol, 77(18):10004–10014.

    Article  PubMed  CAS  Google Scholar 

  • Loughlin W A, Tyndall J D, Glenn M P, Fairlie D P. 2004. Beta-strand mimetics. Chem Rev, 104(12):6085–6117.

    Article  PubMed  CAS  Google Scholar 

  • Mueller N H, Yon C, Ganesh V K, Padmanabhan R. 2007. Characterization of the West Nile virus protease substrate specificity and inhibitors. Int J Biochem Cell Biol, 39(3):606–614.

    Article  PubMed  CAS  Google Scholar 

  • Mukhopadhyay S, Kuhn R J, Rossmann M G. 2005. A structural perspective of the flavivirus life cycle. Nat Rev Microbiol, 3(1):13–22.

    Article  PubMed  CAS  Google Scholar 

  • Nall T A, Chappell K J, Stoermer M J, Fang N X, Tyndall J D, Young P R, Fairlie D P. 2004. Enzymatic Characterization and Homology Model of a Catalytically Active Recombinant West Nile Virus NS3 Protease. J Biol Chem, 279(47):48535–48542.

    Article  PubMed  CAS  Google Scholar 

  • Radichev I, Shiryaev S A, Aleshin A E, Ratnikov B I, Smith J W, Liddington R C, Strongin A Y. 2008. Structure-based mutagenesis identifies important novel determinants of the NS2B cofactor of the West Nile virus two-component NS2B-NS3 proteinase. J Gen Virol, 89(Pt3):636–641.

    Article  PubMed  CAS  Google Scholar 

  • Ryan M D, Monaghan S, Flint M. 1998. Virus-encoded proteinases of the Flaviviridae. J Gen Virol. 79(Pt5):947–959.

    PubMed  CAS  Google Scholar 

  • Shiryaev S A, Ratnikov B I, Chekanov A V, Sikora S, Rozanov D V, Godzik A, Wang J, Smith J W, Huang Z, Lindberg I, Samuel M A, Diamond M S, Strongin A Y. 2006. Cleavage targets and the D-arginine-based inhibitors of the West Nile virus NS3 processing proteinase. Biochem J, 393(Pt2):503–511.

    PubMed  CAS  Google Scholar 

  • Stadler K, Allison S L, Schalich J, Heinz F X. 1997. Proteolytic activation of tick-borne encephalitis virus by furin. J Virol, 71(11):8475–8481.

    PubMed  CAS  Google Scholar 

  • Thomas G. 2002. Furin at the cutting edge: From protein traffic to embryogenesis and disease. Nat Rev Mol Cell Biol, 3(10):753–766.

    Article  PubMed  CAS  Google Scholar 

  • Tilgner M, Shi P Y. 2004. Structure and function of the 3′ terminal six nucleotides of the west nile virus genome in viral replication. J Virol, 78(15):8159–8171.

    Article  PubMed  CAS  Google Scholar 

  • Tyndall J D, Nall T, Fairlie D P. 2005. Proteases universally recognize beta strands in their active sites. Chem Rev, 105(3):973–999.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China

    Fan Jia, Jingjing Fan, Bo Zhang & Zhiming Yuan

Authors
  1. Fan Jia
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Jingjing Fan
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Bo Zhang
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Zhiming Yuan
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Zhiming Yuan.

Additional information

Foundation items: Supported by Important National Science & Technology Specific Projects (2012ZX10004403, 2012ZX10004219).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jia, F., Fan, J., Zhang, B. et al. Mutagenesis of D80-82 and G83 residues in West Nile Virus NS2B: Effects on NS2B-NS3 activity and viral replication. Virol. Sin. 28, 16–23 (2013). https://doi.org/10.1007/s12250-013-3276-y

Download citation

  • Received: 07 August 2012

  • Accepted: 28 December 2012

  • Published: 16 January 2013

  • Issue Date: February 2013

  • DOI: https://doi.org/10.1007/s12250-013-3276-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • West Nile virus
  • NS2B
  • Protease
  • RNA replication
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not logged in - 44.201.94.236

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.