Skip to main content

Advertisement

Log in

The comparison of genetic variation in the envelope protein between various immunodeficiency viruses and equine infectious anemia virus

  • Research Article
  • Published:
Virologica Sinica

Abstract

The envelope protein (Env) of lentiviruses such as HIV, SIV, FIV and EIAV is larger than that of other retroviruses. The Chinese EIAV attenuated vaccine is based on Env and has helped to successfully control this virus, demonstrating that envelope is crucial for vaccine. We compared Env variation of the four kinds of lentiviruses. Phylogenetic analysis showed that the evolutionary relationship of Env between HIV and SIV was the closest and they appeared to descend from a common ancestor, and the relationship of HIV and EIAV was the furthest. EIAV had the shortest Env length and the least number of potential N-linked glycosylation sites (PNGS) as well as glycosylation density compared to various immunodeficiency viruses. However, HIV had the longest Env length and the most PNGS. Moreover, the alignment of HIV and SIV showed that PNGS were primarily distributed within extracellular membrane protein gp120 rather than transmembrane gp41. It implies that the size difference among these viruses is associated with a lentivirus specific function and also the diversity of env. There are low levels of modification of glycosylation sites of Env and selection of optimal protective epitopes might be useful for development of an effective vaccine against HIV/AIDS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bogers W M, Cheng-Mayer C, Montelaro R C. 2000. Developments in preclinical aids vaccine efficacy models. AIDS, 14 Suppl 3: S141–S151.

    Google Scholar 

  2. Burton D R, Desrosiers R C, Doms R W, et al. 2004. Hiv vaccine design and the neutralizing antibody problem. Nat Immunol, 5(3): 233–236.

    Article  PubMed  CAS  Google Scholar 

  3. Cavarelli M, Karlsson I, Zanchetta M, et al. 2008. Hiv-1 with multiple ccr5/cxcr4 chimeric receptor use is predictive of immunological failure in infected children. PLoS One, 3(9): e3292.

    Article  PubMed  Google Scholar 

  4. Clements J E, Zink M C. 1996. Molecular biology and pathogenesis of animal lentivirus infections. Clin Microbiol Rev, 9(1): 100–117.

    PubMed  CAS  Google Scholar 

  5. Craigo J K, Zhang B, Barnes S, et al. 2007. Envelope variation as a primary determinant of lentiviral vaccine efficacy. Proc Natl Acad Sci U S A, 104(38): 15105–15110.

    Article  PubMed  CAS  Google Scholar 

  6. Desrosiers R C. 2004. Prospects for an aids vaccine. Nat Med, 10(3): 221–223.

    Article  PubMed  CAS  Google Scholar 

  7. Felsenstein J. 1996. Inferring phylogenies from protein sequences by parsimony, distance, and likelihood methods. Methods Enzymol, 266: 418–427.

    Article  PubMed  CAS  Google Scholar 

  8. Johnson W E, Sanford H, Schwall L, et al. 2003. Assorted mutations in the envelope gene of simian immunodeficiency virus lead to loss of neutralization resistance against antibodies representing a broad spectrum of specificities. J Virol, 77(18): 9993–10003.

    Article  PubMed  CAS  Google Scholar 

  9. Kuiken C, Korber B, Shafer R W. 2003. Hiv sequence databases. AIDS Rev, 5(1): 52–61.

    PubMed  Google Scholar 

  10. Leroux C, Cadore J L, Montelaro R C. 2004. Equine infectious anemia virus (eiav): What has hiv’s country cousin got to tell us? Vet Res, 35(4): 485–512.

    Article  PubMed  CAS  Google Scholar 

  11. Liang H, He X, Shen R X, et al. 2006. Combined amino acid mutations occurring in the envelope closely correlate with pathogenicity of eiav. Arch Virol, 151(7): 1387–1403.

    Article  PubMed  CAS  Google Scholar 

  12. Losman B, Bolmstedt A, Schonning K, et al. 2001. Protection of neutralization epitopes in the v3 loop of oligomeric human immunodeficiency virus type 1 glycoprotein 120 by n-linked oligosaccharides in the v1 region. AIDS Res Hum Retroviruses, 17(11): 1067–1076.

    Article  PubMed  CAS  Google Scholar 

  13. Losman B, Biller M, Olofsson S, et al. 1999. The n-linked glycan of the v3 region of hiv-1 gp120 and cxcr4-dependent multiplication of a human immunodeficiency virus type 1 lymphocyte-tropic variant. FEBS Lett, 454(1–2): 47–52.

    Article  PubMed  CAS  Google Scholar 

  14. Means R E, Greenough T, Desrosiers R C. 1997. Neutralization sensitivity of cell culture-passaged simian immunodeficiency virus. J Virol, 71(10): 7895–7902.

    PubMed  CAS  Google Scholar 

  15. Mellquist J L, Bowman B, Kasturi L, et al. 1998. Characterization of hiv type 1 gp120 v3 region sequences from ugandan infants. AIDS Res Hum Retroviruses, 14(15): 1391–1395.

    Article  PubMed  CAS  Google Scholar 

  16. Miyauchi K, Curran A R, Long Y, et al. The membrane-spanning domain of gp41 plays a critical role in intracellular trafficking of the hiv envelope protein. Retrovirology, 7: 95.

  17. Mori K, Yasutomi Y, Ohgimoto S, et al. 2001. Quintuple deglycosylation mutant of simian immunodeficiency virus sivmac239 in rhesus macaques: Robust primary replication, tightly contained chronic infection, and elicitation of potent immunity against the parental wild-type strain. J Virol, 75(9): 4023–4028.

    Article  PubMed  CAS  Google Scholar 

  18. Mori K, Sugimoto C, Ohgimoto S, et al. 2005. Influence of glycosylation on the efficacy of an env-based vaccine against simian immunodeficiency virus sivmac239 in a macaque aids model. J Virol, 79(16): 10386–10396.

    Article  PubMed  CAS  Google Scholar 

  19. Ohgimoto S, Shioda T, Mori K, et al. 1998. Location-specific, unequal contribution of the n glycans in simian immunodeficiency virus gp120 to viral infectivity and removal of multiple glycans without disturbing infectivity. J Virol, 72(10): 8365–8370.

    PubMed  CAS  Google Scholar 

  20. Payne S L, Pei X F, Jia B, et al. 2004. Influence of long terminal repeat and env on the virulence phenotype of equine infectious anemia virus. J Virol, 78(5): 2478–2485.

    Article  PubMed  CAS  Google Scholar 

  21. Reitter J N, Means R E, Desrosiers R C. 1998. A role for carbohydrates in immune evasion in aids. Nat Med, 4(6): 679–684.

    Article  PubMed  CAS  Google Scholar 

  22. Rice N R, Henderson L E, Sowder R C, et al. 1990. Synthesis and processing of the transmembrane envelope protein of equine infectious anemia virus. J Virol, 64(8): 3770–3778.

    PubMed  CAS  Google Scholar 

  23. Schonning K, Jansson B, Olofsson S, et al. 1996. Rapid selection for an n-linked oligosaccharide by monoclonal antibodies directed against the v3 loop of human immunodeficiency virus type 1. J Gen Virol, 77 ( Pt 4): 753–758.

    Article  PubMed  CAS  Google Scholar 

  24. Sellon D C, Fuller F J, McGuire T C. 1994. The immunopathogenesis of equine infectious anemia virus. Virus Res, 32(2): 111–138.

    Article  PubMed  CAS  Google Scholar 

  25. Shen R X, Xu Z D, HE Y S, et al. 1979. Development of a eiav donkey leucocyte attenuated vaccine. Sci Agr Sin, 4: 1–15. (in Chinese)

    Google Scholar 

  26. Shen T, Liang H, Tong X, et al. 2006. Amino acid mutations of the infectious clone from chinese eiav attenuated vaccine resulted in reversion of virulence. Vaccine, 24(6): 738–749.

    Article  PubMed  CAS  Google Scholar 

  27. Sjolander S, Bolmstedt A, Akerblom L, et al. 1996. N-linked glycans in the cd4-binding domain of human immunodeficiency virus type 1 envelope glycoprotein gp160 are essential for the in vivo priming of t cells recognizing an epitope located in their vicinity. Virology, 215(2): 124–133.

    Article  PubMed  CAS  Google Scholar 

  28. Sober E. 2004. The contest between parsimony and likelihood. Syst Biol, 53(4): 644–653.

    Article  PubMed  Google Scholar 

  29. Thompson J D, Gibson T J, Plewniak F, et al. 1997. The clustal_x windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res, 25(24): 4876–4882.

    Article  PubMed  CAS  Google Scholar 

  30. Tully D C, Wood C. 2010. Chronology and evolution of the hiv-1 subtype c epidemic in ethiopia. AIDS, 24(10): 1577–1582.

    Article  PubMed  Google Scholar 

  31. Zhang H, Tully D C, Hoffmann F G, et al. 2010. Restricted genetic diversity of hiv-1 subtype c envelope glycoprotein from perinatally infected zambian infants. PLoS One, 5(2): e9294.

    Article  PubMed  Google Scholar 

  32. Zhang M, Gaschen B, Blay W, et al. 2004. Tracking global patterns of n-linked glycosylation site variation in highly variable viral glycoproteins: Hiv, siv, and hcv envelopes and influenza hemagglutinin. Glycobiology, 14(12): 1229–1246.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohong Kong.

Additional information

Foundation items: Natural Science Foundation of China (30970162) and Tianjin Municipal Science and Technology Foundation (08ZCGHHZ01800).

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, Q., Liu, C., Liang, Z. et al. The comparison of genetic variation in the envelope protein between various immunodeficiency viruses and equine infectious anemia virus. Virol. Sin. 27, 241–247 (2012). https://doi.org/10.1007/s12250-012-3253-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12250-012-3253-x

Keywords

Navigation