Skip to main content

HCV NS5A and NS5B enhance expression of human ceramide glucosyltransferase gene

Abstract

Host genes involved in lipid metabolism are differentially affected during the early stages of hepatitis C virus (HCV) infection. Here we demonstrate that artificial up-regulation of fatty acid biosynthesis has a positive effect on the replication of the HCV full-length replicon when cells were treated with nystatin. Conversely, the HCV RNA replication was decreased when fatty acid biosynthesis was inhibited with 25-hydroxycholesterol and PDMP(D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol). In agreement with these results, the expression level of GlcT-1(ceramide glucosyltransferase), a host glucosyltransferase in the first step of GSL (glycosphingolipid) biosynthesis, was found to be closely associated with the expression and replication of HCV RNA. On the other hand, the viral RNA can also activate GlcT-1 in the early stage of viral RNA transfection in vitro. To identify viral factors that are responsible for GlcT-1 activation, we constructed ten stable Vero cell lines that express individual HCV proteins. Based on the analyses of these cell lines and transient transfection assay of the GlcT-1 promoter regions, we conclude that HCV proteins, especially NS5A and NS5B, have positive effects on the expression of GlcT-1. It is possible that NS5A and NS5B stimulate transcription factor(s) to activate the expression of GlcT-1 by increasing its transcription level.

This is a preview of subscription content, access via your institution.

References

  1. André P, Komurian-Pradel F, Deforges S, et al. 2002. Characterization of low- and very-low-density hepatitis C virus RNA-containing particles. J Virol, 76: 6919–6928.

    Article  PubMed  Google Scholar 

  2. Bartenschlager R, Lohmann V. 2000. Replication of hepatitis C virus. J Gen Virol, 81: 1631–1648.

    PubMed  CAS  Google Scholar 

  3. Bigger C B, Guerra B, Brasky K M, et al. 2004. Intrahepatic gene expression during chronic hepatitis C virus infection in chimpanzees. J Virol, 78: 13779–13792.

    Article  PubMed  CAS  Google Scholar 

  4. Chang M L, Yeh C T, Chen J C, et al. 2008. Altered expression patterns of lipid metabolism genes in an animal model of HCV core-related, nonobese, modest hepatic steatosis. BMC Cenomics, 9: 109–117.

    Article  Google Scholar 

  5. Domitrovich A M, Felmlee D J, Siddiqui A. 2005. Hepatitis C virus nonstructural proteins inhibit apolipoprotein B100 secretion. J Biol Chem, 280: 39802–39808.

    Article  PubMed  CAS  Google Scholar 

  6. Dubuisson J, Penin F, Moradpour D. 2002. Interaction of hepatitis C virus proteins with host cell membranes and lipids. Trends Cell Biol, 12: 517–523.

    Article  PubMed  CAS  Google Scholar 

  7. Dumoulin F L, von dem Bussche A, Li J, et al. 2003. Hepatitis C virus NS2 protein inhibits gene expression from different cellular and viral promoters in hepatic and nonhepatic cell lines. Virology, 305: 260–266.

    Article  PubMed  CAS  Google Scholar 

  8. Giannini C, Bréchot C. 2003. Hepatits C virus biology. Cell Death Differ, 10: S27–S38.

    Article  PubMed  CAS  Google Scholar 

  9. Guo J, Yan R, Xu G, et al. 2009. Construction of the Vero cell culture system that can produce can produce infectious HCV particles. Mol Biol Rep, 36: 111–120.

    Article  PubMed  CAS  Google Scholar 

  10. Hoofnagle J H. 2002. Course and outcome of hepatitis C. Hepatology, 36: S21–S29.

    Article  PubMed  Google Scholar 

  11. Hug P, Lin H M, Korte T, et al. 2000. Glycosphingolipids promote entry of a broad range of human immunodeficiency virus type 1 isolates into cell lines expressing CD4, CXCR4, and/or CCR5. J Virol, 74: 6377–6385.

    Article  PubMed  CAS  Google Scholar 

  12. Ichikawa S, Hirabayashi Y. 1998. Glucosylceramide synthase and glycosphingolipid synthesis. Trends Cell Biol, 8: 198–202.

    Article  PubMed  CAS  Google Scholar 

  13. Ichikawa S, Ozawa K, Hirabayashi Y. 1998. Molecular cloning and characterization of the mouse ceramide glucosyltransferase gene. Biochem Biophys Res Commun, 253: 707–711.

    Article  PubMed  CAS  Google Scholar 

  14. Ichikawa S, Sakiyama H, Suzuki G, et al. 1996. Expression cloning of a cDNA for human ceramide glucosyltransferase that catalyzes the first glycosylation step of glycosphingolipid synthesis. Proc Natl Acad Sci U S A, 93: 4638–4643.

    Article  PubMed  CAS  Google Scholar 

  15. Kapadia S B, Chisari F V. 2005. Hepatitis C virus RNA replication is regulated by host geranylgeranylation and fatty acids. Proc Natl Acad Sci U S A, 102: 2561–2596.

    Article  PubMed  CAS  Google Scholar 

  16. Kim K, Kim K H, Ha E, et al. 2009. Hepatitis C virus NS5A protein increases hepatic lipid accumulation via induction of activation and expression of PPARgamma. FEBS Lett, 583: 2720–2726.

    Article  PubMed  CAS  Google Scholar 

  17. Liour S S, Yu R K. 2002. Differential effects of three inhibitors of glycosphingolipid biosynthesis on neuronal differentiation of embryonal carcinoma stem cells. Neurochem Res, 27: 1507–1512.

    Article  PubMed  CAS  Google Scholar 

  18. Moriya K, Shintani Y, Fujie H, et al. 2003. Serum lipid profile of patients with genotype 1b hepatitis C viral infection in Japan. Hepatol Res, 25: 371–376.

    Article  PubMed  CAS  Google Scholar 

  19. Nohturfft A, Yabe D, Goldstein J L, et al. 2000. Regulated step in cholesterol feedback localized to budding of SCAP from ER membranes. Cell, 102: 315–323.

    Article  PubMed  CAS  Google Scholar 

  20. Piver E, Roingeard P, Pagès J C. 2010. The cell biology of hepatitis C virus (HCV) lipid addiction: molecular mechanisms and its potential importance in the clinic. Int J Biochem Cell Biol, 42: 869–879.

    Article  PubMed  CAS  Google Scholar 

  21. Reiss S, Rebhan I, Backes P, et al. 2011. Recruitment and activation of a lipid kinase by hepatitis C virus NS5A is essential for integrity of the membranous replication compartment. Cell Host Microbe, 20: 32–45.

    Article  Google Scholar 

  22. Riddle T M, Kuhel D G, Woollett L A, et al. 2001. HIV protease inhibitor induces fatty acid and sterol biosynthesis in liver and adipose tissues due to the accumulation of activated sterol regulatory element-binding proteins in the nucleus. J Biol Chem, 276: 37514–37519.

    Article  PubMed  CAS  Google Scholar 

  23. Sambrook J, Fritsch E F, Manitatis T. 1989. In: Molecular Cloning — a Laboratory Manual. 2nd ed., New York: Cold Spring Harbor Laboratory Press, pp.15.3–15.108.

    Google Scholar 

  24. Shi S T, Polyak S J, Tu H, et al. 2002. Hepatitis C virus NS5A colocalizes with the core protein on lipid droplets and interacts with apolipoproteins. Virology, 292: 198–210.

    Article  PubMed  CAS  Google Scholar 

  25. Su A I, Pezacki J P, Wodicka L, et al. 2002. Genomic analysis of the host response to hepatitis C virus infection. Proc Natl Acad Sci U S A, 99: 15669–15674.

    Article  PubMed  CAS  Google Scholar 

  26. Yamaga A K, Ou J H. 2002. Membrane topology of the hepatitis C virus NS2 protein. J Biol Chem, 277: 33228–33234.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cong-yi Zheng.

Additional information

Foundation item: the National “973” Program of China (No. 2011CB504800).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Guo, J., Yan, R., Xu, Gd. et al. HCV NS5A and NS5B enhance expression of human ceramide glucosyltransferase gene. Virol. Sin. 27, 38–47 (2012). https://doi.org/10.1007/s12250-012-3226-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12250-012-3226-0

Key words

  • Hepatitis C virus
  • Fatty acid biosynthesis
  • Ceramide glucosyltransferase
  • Stable cell lines