Virologica Sinica

, 26:347 | Cite as

Molecular determinants responsible for the subcellular localization of HSV-1 UL4 protein

  • Wei-wei Pan
  • Jing Long
  • Jun-ji Xing
  • Chun-fu Zheng
Article

Abstract

The function of the herpes simplex virus type 1 (HSV-1) UL4 protein is still elusive. Our objective is to investigate the subcellular transport mechanism of the UL4 protein. In this study, fluorescence microscopy was employed to investigate the subcellular localization of UL4 and characterize the transport mechanism in living cells. By constructing a series of deletion mutants fused with enhanced yellow fluorescent protein (EYFP), the nuclear export signals (NES) of UL4 were for the first time mapped to amino acid residues 178 to 186. In addition, the N-terminal 19 amino acids are identified to be required for the granule-like cytoplasmic pattern of UL4. Furthermore, the UL4 protein was demonstrated to be exported to the cytoplasm through the NES in a chromosomal region maintenance 1 (CRM1)-dependent manner involving RanGTP hydrolysis.

Key words

Herpes simplex virus type 1 (HSV-1) UL4 Subcellular localization Nuclear export signal (NES) Chromosomal region maintenance 1 (CRM1) 

References

  1. 1.
    Baines J D, Roizman B. 1991. The open reading frames ul3, ul4, ul10, and ul16 are dispensable for the replication of herpes simplex virus 1 in cell culture. J Virol, 65(2): 938–944.PubMedGoogle Scholar
  2. 2.
    Baines J D, Ward P L, Campadelli-Fiume G, et al. 1991. The ul20 gene of herpes simplex virus 1 encodes a function necessary for viral egress. J Virol, 65(12): 6414–6424.PubMedGoogle Scholar
  3. 3.
    Davison A J, Scott J E. 1986. The complete DNA sequence of varicella-zoster virus. J Gen Virol, 67: 1759–1816.PubMedCrossRefGoogle Scholar
  4. 4.
    Day R N, Schaufele F. 2008. Fluorescent protein tools for studying protein dynamics in living cells: A review. J Biomed Opt, 13(3): 031202.PubMedCrossRefGoogle Scholar
  5. 5.
    Dean H J, Cheung A K. 1994. Identification of the pseudorabies virus ul4 and ul5 (helicase) genes. Virology, 202(2): 962–967.PubMedCrossRefGoogle Scholar
  6. 6.
    Ding Q, Guo H, Lin F, et al. 2010. Characterization of the nuclear import and export mechanisms of bovine herpesvirus-1 infected cell protein 27. Virus Res, 149(1): 95–103.PubMedCrossRefGoogle Scholar
  7. 7.
    Eide T, Marsden H S, Leib D A, et al. 1998. Identification of the ul4 protein of herpes simplex virus type 1. J Gen Virol, 79: 3033–3038.PubMedGoogle Scholar
  8. 8.
    Fuchs W, Granzow H, Klopfleisch R, et al. 2006. The ul4 gene of pseudorabies virus encodes a minor infected-cell protein that is dispensable for virus replication. J Gen Virol, 87: 2517–2525.PubMedCrossRefGoogle Scholar
  9. 9.
    Ghildyal R, Ho A, Dias M, et al. 2009. The respiratory syncytial virus matrix protein possesses a crm1-mediated nuclear export mechanism. J Virol, 83(11): 5353–5362.PubMedCrossRefGoogle Scholar
  10. 10.
    Gorlich D, Mattaj I W. 1996. Nucleocytoplasmic transport. Science, 271(5255): 1513–1518.PubMedCrossRefGoogle Scholar
  11. 11.
    Guo H, Ding Q, Lin F, et al. 2009. Characterization of the nuclear and nucleolar localization signals of bovine herpesvirus-1 infected cell protein 27. Virus Res, 145(2): 312–320.PubMedCrossRefGoogle Scholar
  12. 12.
    Heine J W, Honess R W, Cassai E, et al. 1974. Proteins specified by herpes simplex virus. Xii. The virion polypeptides of type 1 strains. J Virol, 14(3): 640–651.PubMedGoogle Scholar
  13. 13.
    Honess R W, Roizman B. 1974. Regulation of herpesvirus macromolecular synthesis. I. Cascade regulation of the synthesis of three groups of viral proteins. J Virol, 14(1): 8–19.PubMedGoogle Scholar
  14. 14.
    Jahedi S, Markovitz N S, Filatov F, et al. 1999. Colocalization of the herpes simplex virus 1 μL4 protein with infected cell protein 22 in small, dense nuclear structures formed prior to onset of DNA synthesis. J Virol, 73(6): 5132–5138.PubMedGoogle Scholar
  15. 15.
    Jun P Y, Strelow L I, Herman R C, et al. 1998. The μL4 gene of herpes simplex virus type 1 is dispensable for latency, reactivation and pathogenesis in mice. J Gen Virol, 79: 1603–1611.PubMedGoogle Scholar
  16. 16.
    Kalland K H, Szilvay A M, Brokstad K A, et al. 1994. The human immunodeficiency virus type 1 rev protein shuttles between the cytoplasm and nuclear compartments. Mol Cell Biol, 14(11): 7436–7444.PubMedGoogle Scholar
  17. 17.
    Kudo N, Wolff B, Sekimoto T, et al. 1998. Leptomycin b inhibition of signal-mediated nuclear export by direct binding to crm1. Exp Cell Res, 242(2): 540–547.PubMedCrossRefGoogle Scholar
  18. 18.
    Longnecker R, Roizman B. 1986. Generation of an inverting herpes simplex virus 1 mutant lacking the l-s junction a sequences, an origin of DNA synthesis, and several genes including those specifying glycoprotein e and the alpha 47 gene. J Virol, 58(2): 583–591.PubMedGoogle Scholar
  19. 19.
    Longnecker R, Roizman B. 1987. Clustering of genes dispensable for growth in culture in the s component of the hsv-1 genome. Science, 236(4801): 573–576.PubMedCrossRefGoogle Scholar
  20. 20.
    Longnecker R, Chatterjee S, Whitley R J, et al. 1987. Identification of a herpes simplex virus 1 glycoprotein gene within a gene cluster dispensable for growth in cell culture. Proc Natl Acad Sci U S A, 84(12): 4303–4307.PubMedCrossRefGoogle Scholar
  21. 21.
    Markovitz N S, Roizman B. 2000. Small dense nuclear bodies are the site of localization of herpes simplex virus 1 u(l)3 and u(l)4 proteins and of icp22 only when the latter protein is present. J Virol, 74(1): 523–528.PubMedCrossRefGoogle Scholar
  22. 22.
    Mattaj I W, Englmeier L. 1998. Nucleocytoplasmic transport: The soluble phase. Annu Rev Biochem, 67: 265–306.PubMedCrossRefGoogle Scholar
  23. 23.
    McGeoch D J, Cunningham C, McIntyre G, et al. 1991. Comparative sequence analysis of the long repeat regions and adjoining parts of the long unique regions in the genomes of herpes simplex viruses types 1 and 2. J Gen Virol, 72: 3057–3075.PubMedCrossRefGoogle Scholar
  24. 24.
    McGeoch D J, Dalrymple M A, Davison A J, et al. 1988. The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. J Gen Virol, 69: 1531–1574.PubMedCrossRefGoogle Scholar
  25. 25.
    Meignier B, Longnecker R, Mavromara-Nazos P, et al. 1988. Virulence of and establishment of latency by genetically engineered deletion mutants of herpes simplex virus 1. Virology, 162(1): 251–254.PubMedCrossRefGoogle Scholar
  26. 26.
    Meyer B E, Malim M H. 1994. The hiv-1 rev trans-activator shuttles between the nucleus and the cytoplasm. Genes Dev, 8(13): 1538–1547.PubMedCrossRefGoogle Scholar
  27. 27.
    Meyer B E, Meinkoth J L, Malim M H. 1996. Nuclear transport of human immunodeficiency virus type 1, visna virus, and equine infectious anemia virus rev proteins: Identification of a family of transferable nuclear export signals. J Virol, 70(4): 2350–2359.PubMedGoogle Scholar
  28. 28.
    Nakielny S, Dreyfuss G. 1997. Nuclear export of proteins and rnas. Curr Opin Cell Biol, 9(3): 420–429.PubMedCrossRefGoogle Scholar
  29. 29.
    Nishi K, Yoshida M, Fujiwara D, et al. 1994. Leptomycin b targets a regulatory cascade of crm1, a fission yeast nuclear protein, involved in control of higher order chromosome structure and gene expression. J Biol Chem, 269(9): 6320–6324.PubMedGoogle Scholar
  30. 30.
    Rowland R R, Yoo D. 2003. Nucleolar-cytoplasmic shuttling of prrsv nucleocapsid protein: A simple case of molecular mimicry or the complex regulation by nuclear import, nucleolar localization and nuclear export signal sequences. Virus Res, 95(1–2): 23–33.PubMedCrossRefGoogle Scholar
  31. 31.
    Sears A E, Halliburton I W, Meignier B, et al. 1985. Herpes simplex virus 1 mutant deleted in the alpha 22 gene: Growth and gene expression in permissive and restrictive cells and establishment of latency in mice. J Virol, 55(2): 338–346.PubMedGoogle Scholar
  32. 32.
    Tanaka M, Kagawa H, Yamanashi Y, et al. 2003. Construction of an excisable bacterial artificial chromosome containing a full-length infectious clone of herpes simplex virus type 1: Viruses reconstituted from the clone exhibit wild-type properties in vitro and in vivo. J Virol, 77(2): 1382–1391.PubMedCrossRefGoogle Scholar
  33. 33.
    Telford E A, Watson M S, McBride K, et al. 1992. The DNA sequence of equine herpesvirus-1. Virology, 189(1): 304–316.PubMedCrossRefGoogle Scholar
  34. 34.
    Ullman K S, Powers M A, Forbes D J. 1997. Nuclear export receptors: From importin to exportin. Cell, 90(6): 967–970.PubMedCrossRefGoogle Scholar
  35. 35.
    Vlcek C, Benes V, Lu Z, et al. 1995. Nucleotide sequence analysis of a 30-kb region of the bovine herpesvirus 1 genome which exhibits a colinear gene arrangement with the ul21 to ul4 genes of herpes simplex virus. Virology, 210(1): 100–108.PubMedCrossRefGoogle Scholar
  36. 36.
    Ward P L, Taddeo B, Markovitz N S, et al. 2000. Identification of a novel expressed open reading frame situated between genes u(l)20 and u(l)21 of the herpes simplex virus 1 genome. Virology, 266(2): 275–285.PubMedCrossRefGoogle Scholar
  37. 37.
    Weis K. 1998. Importins and exportins: How to get in and out of the nucleus. Trends Biochem Sci, 23(5): 185–189.PubMedCrossRefGoogle Scholar
  38. 38.
    Williams P, Verhagen J, Elliott G. 2008. Characterization of a crm1-dependent nuclear export signal in the c terminus of herpes simplex virus type 1 tegument protein ul47. J Virol, 82(21): 10946–10952.PubMedCrossRefGoogle Scholar
  39. 39.
    Xing J, Wu F, Pan W, et al. 2010. Molecular anatomy of subcellular localization of hsv-1 tegument protein us11 in living cells. Virus Res, 153(1): 71–81.PubMedCrossRefGoogle Scholar
  40. 40.
    Xing J, Wang S, Lin F, et al. 2011. Comprehensive characterization of interaction complexes of herpes simplex virus type 1 icp22, ul3, ul4, and ul20.5. J Virol, 85(4): 1881–1886.PubMedCrossRefGoogle Scholar
  41. 41.
    Zheng C, Brownlie R, Babiuk L A, et al. 2005. Characterization of the nuclear localization and nuclear export signals of bovine herpesvirus 1 vp22. J Virol, 79(18): 11864–11872.PubMedCrossRefGoogle Scholar

Copyright information

© Wuhan Institute of Virology, CAS and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Wei-wei Pan
    • 1
  • Jing Long
    • 1
  • Jun-ji Xing
    • 1
  • Chun-fu Zheng
    • 1
  1. 1.Molecular Virology and Viral Immunology Research Group, State Key Laboratory of Virology, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina

Personalised recommendations