Skip to main content

Advertisement

SpringerLink
  • Log in
  1. Home
  2. Virologica Sinica
  3. Article
Characterization of the receptor-binding domain of Ebola glycoprotein in viral entry
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Identification and Characterization of a Novel Single Domain Antibody Against Ebola Virus

11 October 2021

Rui Wang, Haiwei Zhang, … Rui Gong

Efficient production of a lentiviral system for displaying Crimean-Congo hemorrhagic fever virus glycoproteins reveals a broad range of cellular susceptibility and neutralization ability

18 March 2020

Abbas Ahmadi Vasmehjani, Mostafa Salehi-Vaziri, … Shohreh Shahmahmoodi

The key amino acids of E protein involved in early flavivirus infection: viral entry

03 July 2021

Tao Hu, Zhen Wu, … Anchun Cheng

Identification of potential inhibitor against Ebola virus VP35: insight into virtual screening, pharmacoinformatics profiling, and molecular dynamic studies

24 February 2022

Ratul Bhowmik, Ajay Manaithiya, … Ratna Roy

Development of peptides targeting receptor binding site of the envelope glycoprotein to contain the West Nile virus infection

11 October 2021

Patrícia Mertinková, Evelína Mochnáčová, … Mangesh Bhide

Rescue and characterization of recombinant cedar virus, a non-pathogenic Henipavirus species

27 March 2018

Eric D. Laing, Moushimi Amaya, … Christopher C. Broder

Crystal structure of human LC8 bound to a peptide from Ebola virus VP35

25 February 2021

Dahwan Lim, Ho-Chul Shin, … Bonsu Ku

Intracellular human antibody fragments recognizing the VP35 protein of Zaire Ebola filovirus inhibit the protein activity

05 September 2019

Michela Flego, Aldo Frau, … Enzo Tramontano

Targeting ebola virus VP40 protein through novel inhibitors: exploring the structural and dynamic perspectives on molecular landscapes

25 January 2021

Shama Khan, Zeynab Fakhar & Aijaz Ahmad

Download PDF
  • Published: 12 June 2011

Characterization of the receptor-binding domain of Ebola glycoprotein in viral entry

  • Jizhen Wang1,
  • Balaji Manicassamy1 nAff3,
  • Michael Caffrey2 &
  • …
  • Lijun Rong1 

Virologica Sinica volume 26, pages 156–170 (2011)Cite this article

  • 863 Accesses

  • 14 Citations

  • Metrics details

Abstract

Ebola virus infection causes severe hemorrhagic fever in human and non-human primates with high mortality. Viral entry/infection is initiated by binding of glycoprotein GP protein on Ebola virion to host cells, followed by fusion of virus-cell membrane also mediated by GP. Using an human immunodeficiency virus (HIV)-based pseudotyping system, the roles of 41 Ebola GP1 residues in the receptor-binding domain in viral entry were studied by alanine scanning substitutions. We identified that four residues appear to be involved in protein folding/structure and four residues are important for viral entry. An improved entry interference assay was developed and used to study the role of these residues that are important for viral entry. It was found that R64 and K95 are involved in receptor binding. In contrast, some residues such as I170 are important for viral entry, but do not play a major role in receptor binding as indicated by entry interference assay and/or protein binding data, suggesting that these residues are involved in post-binding steps of viral entry. Furthermore, our results also suggested that Ebola and Marburg viruses share a common cellular molecule for entry.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. Alvarez C P, Lasala F, Carrillo J, et al. 2002. C-Type Lectins DC-SIGN and L-SIGN Mediate Cellular Entry by Ebola Virus in cis and in trans. J Virol, 76: 6841–6844.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Basu A, Li B, Mills D M, et al. 2011. Identification of a small-molecule entry inhibitor for filoviruses. J Virol, 85: 3106–3119.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Brindley M A, Hughes L, Ruiz A, et al. 2007. Ebola virus glycoprotein 1: identification of residues important for binding and postbinding events. J Virol, 81: 7702–7709.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Chan S Y, Empig C J, Welte F J, et al. 2001. Folate receptor-alpha is a cofactor for cellular entry by Marburg and Ebola viruses. Cell, 106: 117–126.

    Article  CAS  PubMed  Google Scholar 

  5. Chandran K, Sullivan N J, Felbor U, et al. 2005. Endosomal proteolysis of the Ebola virus glycoprotein is necessary for infection. Science, 308: 1643–1645.

    Article  CAS  PubMed  Google Scholar 

  6. Connor R I, Chen B K, Choe S, et al. 1995. Vpr is required for efficient replication of human immunodeficiency virus type-1 in mononuclear phagocytes. Virology, 206: 935–944.

    Article  CAS  PubMed  Google Scholar 

  7. Dolnik O, Volchkova V, Garten W, et al. 2004. Ectodomain shedding of the glycoprotein GP of Ebola virus. Embo J, 23: 2175–2184.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Dube D, Schornberg K L, Shoemaker C J, et al. 2010. Cell adhesion-dependent membrane trafficking of a binding partner for the ebolavirus glycoprotein is a determinant of viral entry. Proc Natl Acad Sci USA, 107: 16637–16642.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Ebert D H, Deussing J, Peters C, et al. 2002. Cathepsin L and cathepsin B mediate reovirus disassembly in murine fibroblast cells. J Biol Chem, 277: 24609–24617.

    Article  CAS  PubMed  Google Scholar 

  10. Feldmann H, Volchkov V E, Volchkova V A, et al. 2001. Biosynthesis and role of filoviral glycoproteins. J Gen Virol, 82: 2839–28348.

    CAS  PubMed  Google Scholar 

  11. He J, Choe S, Walker R, et al. 1995. Human immunodeficiency virus type 1 viral protein R (Vpr) arrests cells in the G2 phase of the cell cycle by inhibiting p34cdc2 activity. J Virol 69: 6705–6711.

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Huang I C, Bosch B J, Li F, et al. 2006. SARS coronavirus, but not human coronavirus NL63, utilizes cathepsin L to infect ACE2-expressing cells. J Biol Chem, 281: 3198–3203.

    Article  CAS  PubMed  Google Scholar 

  13. Ito H, Watanabe S, Takada A, et al. 2001. Ebola virus glycoprotein: proteolytic processing, acylation, cell tropism, and detection of neutralizing antibodies. J Virol, 75: 1576–1580.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Jeffers S A, Sanders D A, Sanchez A. 2002. Covalent modifications of the ebola virus glycoprotein. J Virol, 76: 12463–12472.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Jiang H, Wang J, Manicassamy B, et al. 2009. The role of the charged residues of the GP2 helical regions in Ebola entry. Virol Sin, 24: 121–135.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Kaletsky R L, Simmons G, Bates P. 2007. Proteolysis of the Ebola virus glycoproteins enhances virus binding and infectivity. J Virol, 81:13378–13384.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Kuhn J H, Radoshitzky S R, Guth A C, et al. 2006. Conserved receptor-binding domains of Lake Victoria marburgvirus and Zaire ebolavirus bind a common receptor. J Biol Chem, 281: 15951–15958.

    Article  CAS  PubMed  Google Scholar 

  18. Lee J E, Fusco M L, Hessell A J, et al. 2008. Structure of the Ebola virus glycoprotein bound to an antibody from a human survivor. Nature, 454: 177–182.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Leffel E K, Reed D S. 2004. Marburg and Ebola viruses as aerosol threats. Biosecur Bioterror, 2: 186–191.

    Article  PubMed  Google Scholar 

  20. Leroy E M, Kumulungui B, Pourrut X, et al. 2005. Fruit bats as reservoirs of Ebola virus. Nature, 438: 575–576.

    Article  CAS  PubMed  Google Scholar 

  21. Leroy E M, Rouquet P, Formenty P, et al. 2004. Multiple Ebola virus transmission events and rapid decline of central African wildlife. Science, 303: 387–390.

    Article  CAS  PubMed  Google Scholar 

  22. Lin G, Simmons G, Pohlmann S, et al. 2003. Differential N-linked glycosylation of human immunodeficiency virus and Ebola virus envelope glycoproteins modulates interactions with DC-SIGN and DC-SIGNR. J Virol, 77: 1337–1346.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Manicassamy B, Rong L. 2009. Expression of Ebolavirus glycoprotein on the target cells enhances viral entry. Virol J, 6: 75.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Manicassamy B, Wang J, Jiang H, et al. 2005. Comprehensive Analysis of Ebola Virus GP1 in Viral Entry. J Virol 79: 4793–4805.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Manicassamy B, Wang J, Rumschlag E, et al. 2007. Characterization of Marburg virus glycoprotein in viral entry. Virology, 358: 79–88.

    Article  CAS  PubMed  Google Scholar 

  26. Mpanju O M, Towner J S, Dover J E, et al. 2006. Identification of two amino acid residues on Ebola virus glycoprotein 1 critical for cell entry. Virus Res, 121: 205–214.

    Article  CAS  PubMed  Google Scholar 

  27. Naldini L, Blomer U, Gage F H, et al. 1996. Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc Natl Acad Sci U S A, 93: 11382–11388.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Neumann G, Feldmann H, Watanabe S, et al. 2002. Reverse genetics demonstrates that proteolytic processing of the Ebola virus glycoprotein is not essential for replication in cell culture. J Virol, 76: 406–410.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Neumann G, Geisbert T W, Ebihara H, et al. Daddario-DiCaprio, H. Feldmann, and Y. Kawaoka. 2007. Proteolytic processing of the Ebola virus glycoprotein is not critical for Ebola virus replication in nonhuman primates. J Virol, 81: 2995–2998.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Pager C T, Craft W W, Patch Jr J, et al. 2006. A mature and fusogenic form of the Nipah virus fusion protein requires proteolytic processing by cathepsin L. Virology, 346: 251–257.

    Article  CAS  PubMed  Google Scholar 

  31. Qiu Z, Hingley S T, Simmons G, et al. 2006. Endosomal proteolysis by cathepsins is necessary for murine coronavirus mouse hepatitis virus type 2 spike-mediated entry. J Virol, 80: 5768–5776.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Saeed M F, Kolokoltsov A A, Albrecht T, et al. 2010. Cellular entry of ebola virus involves uptake by a macropinocytosis-like mechanism and subsequent trafficking through early and late endosomes. PLoS Pathog, 6(9).pii: e1001110.

  33. Saeed M F, Kolokoltsov A A, Freiberg A N, et al. 2008. Phosphoinositide-3 kinase-Akt pathway controls cellular entry of Ebola virus. PLoS Pathog, 4:e1000141.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Sanchez A, Kiley M P, Holloway B P, et al. 1993. Sequence analysis of the Ebola virus genome: organization, genetic elements, and comparison with the genome of Marburg virus. Virus Res, 29: 215–240.

    Article  CAS  PubMed  Google Scholar 

  35. Sanchez A, Trappier S G, Mahy B W, et al. 1996. The virion glycoproteins of Ebola viruses are encoded in two reading frames and are expressed through transcriptional editing. Proc Natl Acad Sci U S A, 93: 3602–3607.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Sanchez A, Trappier S G, Stroher U, et al. 1998. Variation in the glycoprotein and VP35 genes of Marburg virus strains. Virology, 240: 138–146.

    Article  CAS  PubMed  Google Scholar 

  37. Schornberg K, Matsuyama S, Kabsch K, et al. 2006. Role of endosomal cathepsins in entry mediated by the ebola virus glycoprotein. J Virol, 80: 4174–4178.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Shimojima M, Takada A, Ebihara H, et al. 2006. Tyro3 family-mediated cell entry of ebola and marburg viruses. J Virol, 80: 10109–10116.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Simmons G, Gosalia D N, Rennekamp A J, et al. 2005. Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry. Proc Natl Acad Sci USA, 102: 11876–11881.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Simmons G, Wool-Lewis R J, Baribaud F, et al. 2002. Ebola virus glycoproteins induce global surface protein down-modulation and loss of cell adherence. J Virol, 76: 2518–2528.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Simon J H, Fouchier R A, Southerling T E, et al. 1997. The Vif and Gag proteins of human immunodeficiency virus type 1 colocalize in infected human T cells. J Virol, 71: 5259–5267.

    PubMed Central  CAS  PubMed  Google Scholar 

  42. Takada A, Fujioka K, Tsuiji M, et al. 2004. Human macrophage C-type lectin specific for galactose and N-acetylgalactosamine promotes filovirus entry. J Virol, 78: 2943–2947.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Takada A, Robison C, Goto H, et al. 1997. A system for functional analysis of Ebola virus glycoprotein. Proc Natl Acad Sci USA, 94: 14764–14769.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Volchkov V E, Becker S, Volchkova V A, et al. 1995. GP mRNA of Ebola virus is edited by the Ebola virus polymerase and by T7 and vaccinia virus polymerases. Virology, 214: 421–430.

    Article  CAS  PubMed  Google Scholar 

  45. Volchkov V E, Feldmann H, Volchkova V A. 1998. Processing of the Ebola virus glycoprotein by the proprotein convertase furin. Proc Natl Acad Sci U S A, 95: 5762–5767.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Warren T K, Warfield K L, Wells J, et al. 2010. Antiviral activity of a small-molecule inhibitor of filovirus infection. Antimicrob Agents Chemother, 54: 2152–2159.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Wilson J A, Bray M, Bakken R, et al. 2001. Vaccine potential of Ebola virus VP24, VP30, VP35, and VP40 proteins. Virology, 286: 384–390.

    Article  CAS  PubMed  Google Scholar 

  48. Wool-Lewis R, Bates P. 1998. Characterization of Ebola virus entry by using pseudotyped viruses: Identification of receptor deficient cell lines. J Virol, 72: 3155–3160.

    PubMed Central  CAS  PubMed  Google Scholar 

  49. Wool-Lewis R, Bates P. 1999. Endoproteolytic processing of the ebola virus envelope glycoprotein: cleavage is not required for function. J Virol, 73: 1419–1426.

    PubMed Central  CAS  PubMed  Google Scholar 

  50. Yang Z Y, Duckers H J, Sullivan N J, et al. 2000. Identification of the Ebola virus glycoprotein as the main viral determinant of vascular cell cytotoxicity and injury. Nat Med, 6:886–889.

    Article  CAS  PubMed  Google Scholar 

  51. Yermolina M V, Wang J, Caffrey M, et al. 2011. Discovery, synthesis, and biological evaluation of a novel group of selective inhibitors of filoviral entry. J Med Chem, 54: 765–781.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Author notes
  1. Balaji Manicassamy

    Present address: Department of Microbiology, Mount Sinai School of Medicine, 1 Gustave L. Levy Place, Box 1124, New York, NY, 10029, USA

Authors and Affiliations

  1. Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA

    Jizhen Wang, Balaji Manicassamy & Lijun Rong

  2. Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60607, USA

    Michael Caffrey

Authors
  1. Jizhen Wang
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Balaji Manicassamy
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Michael Caffrey
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Lijun Rong
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Lijun Rong.

Additional information

Foundation item: National Institutes of Health Grant (AI 059570 and AI077767).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, J., Manicassamy, B., Caffrey, M. et al. Characterization of the receptor-binding domain of Ebola glycoprotein in viral entry. Virol. Sin. 26, 156–170 (2011). https://doi.org/10.1007/s12250-011-3194-9

Download citation

  • Received: 31 March 2011

  • Accepted: 25 April 2011

  • Published: 12 June 2011

  • Issue Date: June 2011

  • DOI: https://doi.org/10.1007/s12250-011-3194-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Key words

  • Receptor-binding domain
  • Ebola virus
  • Glycoprotein
  • Viral Entry
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not logged in - 3.239.117.1

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.