Skip to main content

The role of HIV replicative fitness in perinatal transmission of HIV

Abstract

Perinatal transmission of Human immunodeficiency virus (HIV), also called mother-to-child transmission (MTCT), accounts for 90% of infections in infants worldwide and occurs in 30%–45% of children born to untreated HIV-1 infected mothers. Among HIV-1 infected mothers, some viruses are transmitted from mothers to their infants while others are not. The relationship between virologic properties and the pathogenesis caused by HIV-1 remains unclear. Previous studies have demonstrated that one obvious source of selective pressure in the perinatal transmission of HIV-1 is maternal neutralizing antibodies. Recent studies have shown that viruses which are successfully transmitted to the child have growth advantages over those not transmitted, when those two viruses are grown together. Furthermore, the higher fitness is determined by the gp120 protein of the virus envelope. This suggests that the selective transmission of viruses with higher fitness occurred exclusively, regardless of transmission routes. There are many factors contributing to the selective transmission and HIV replicative fitness is an important one that should not be neglected. This review summarizes current knowledge of the role of HIV replicative fitness in HIV MTCT transmission and the determinants of viral fitness upon MTCT.

This is a preview of subscription content, access via your institution.

References

  1. Abraha A, Troyer R M, Quinones-Mateu M E, et al. 2005. Methods to determine hiv-1 ex vivo fitness. Methods Mol Biol, 304: 355–368.

    CAS  PubMed  Google Scholar 

  2. Ahmad N. 2010. Molecular mechanisms of hiv-1 mother-to-child transmission and infection in neonatal target cells. Life Sci, DO1:10.1016/j.lfs.2010.09.023.

  3. Anonymous. 2001. Duration of ruptured membranes and vertical transmission of hiv-1: A meta-analysis from 15 prospective cohort studies. AIDS, 15(3): 357–368.

  4. Arien K K, Troyer R M, Gali Y, et al. 2005. Replicative fitness of historical and recent hiv-1 isolates suggests hiv-1 attenuation over time. AIDS, 19(15): 1555–1564.

    Article  PubMed  Google Scholar 

  5. Arien K K, Abraha A, Quinones-Mateu M E, et al. 2005. The replicative fitness of primary human immunodeficiency virus type 1 (hiv-1) group m, hiv-1 group o, and hiv-2 isolates. J Virol, 79(14): 8979–8990.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Arien K K, Gali Y, El-Abdellati A, et al. 2006. Replicative fitness of ccr5-using and cxcr4-using human immunodeficiency virus type 1 biological clones. Virology, 347(1): 65–74.

    Article  CAS  PubMed  Google Scholar 

  7. Asjo B, Morfeldt-Manson L, Albert J, et al. 1986. Replicative capacity of human immunodeficiency virus from patients with varying severity of hiv infection. Lancet, 2(8508): 660–662.

    CAS  PubMed  Google Scholar 

  8. Ball S C, Abraha A, Collins K R, et al. 2003. Comparing the ex vivo fitness of ccr5-tropic human immunodeficiency virus type 1 isolates of subtypes b and c. J Virol, 77(2): 1021–1038.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Behets F M, Matendo R, Vaz L M, et al. 2006. Preventing vertical transmission of hiv in kinshasa, democratic republic of the congo: A baseline survey of 18 antenatal clinics. Bull World Health Organ, 84(12): 969–975.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Bhoopat L, Khunamornpong S, Sirivatanapa P, et al. 2005. Chorioamnionitis is associated with placental transmission of human immunodeficiency virus-1 subtype e in the early gestational period. Mod Pathol, 18(10): 1357–1364.

    Article  PubMed  Google Scholar 

  11. Biesinger T, White R, Yu Kimata M T, et al. 2010. Relative replication capacity of phenotypic siv variants during primary infections differs with route of inoculation. Retrovirology, 7: 88.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Biggar R J, Taha T E, Hoover D R, et al. 2006. Higher in utero and perinatal hiv infection risk in girls than boys. J Acquir Immune Defic Syndr, 41(4): 509–513.

    Article  PubMed  Google Scholar 

  13. Birkhead G S, Pulver W P, Warren B L, et al. 2010. Progress in prevention of mother-to-child transmission of hiv in new york state: 1988–2008. J Public Health Manag Pract, 16(6): 481–491.

    Article  PubMed  Google Scholar 

  14. Bulterys P L, Dalai S C, Katzenstein D A. 2010. Viral sequence analysis from hiv-infected mothers and infants: Molecular evolution, diversity, and risk factors for mother-to-child transmission. Clin Perinatol, 37(4): 739–750, viii.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Cavarelli M, Karlsson I, Zanchetta M, et al. 2008. Hiv-1 with multiple ccr5/cxcr4 chimeric receptor use is predictive of immunological failure in infected children. PLoS One, 3(9): e3292.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Centers for Diease Control. 1982. Update on acquired immune deficiency syndrome (AIDS)-united states. MMWR Morb Mortal Wkly Rep, 31(37): 504–513.

    Google Scholar 

  17. Chen K T, Segu M, Lumey L H, et al. 2005. Genital herpes simplex virus infection and perinatal transmission of human immunodeficiency virus. Obstet Gynecol, 106(6): 1341–1348.

    Article  PubMed  Google Scholar 

  18. Chun T W, Carruth L, Finzi D, et al. 1997. Quantification of latent tissue reservoirs and total body viral load in hiv-1 infection. Nature, 387(6629): 183–188.

    Article  CAS  PubMed  Google Scholar 

  19. Contag C H, Ehrnst A, Duda J, et al. 1997. Mother-to-infant transmission of human immunodeficiency virus type 1 involving five envelope sequence subtypes. J Virol, 71(2): 1292–1300.

    PubMed Central  CAS  PubMed  Google Scholar 

  20. De Cock K M, Fowler M G, Mercier E, et al. 2000. Prevention of mother-to-child hiv transmission in resource-poor countries: Translating research into policy and practice. JAMA, 283(9): 1175–1182.

    Article  PubMed  Google Scholar 

  21. Dickover R, Garratty E, Yusim K, et al. 2006. Role of maternal autologous neutralizing antibody in selective perinatal transmission of human immunodeficiency virus type 1 escape variants. J Virol, 80(13): 6525–6533.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Dickover R E, Garratty E M, Herman S A, et al. 1996. Identification of levels of maternal hiv-1 rna associated with risk of perinatal transmission. Effect of maternal zidovudine treatment on viral load. JAMA, 275(8): 599–605.

    Article  CAS  PubMed  Google Scholar 

  23. Domingo E, Holland J J. 1997. Rna virus mutations and fitness for survival. Annu Rev Microbiol, 51: 151–178.

    Article  CAS  PubMed  Google Scholar 

  24. Drake A L, John-Stewart G C, Wald A, et al. 2007. Herpes simplex virus type 2 and risk of intrapartum human immunodeficiency virus transmission. Obstet Gynecol, 109(2 Pt 1): 403–409.

    Article  CAS  PubMed  Google Scholar 

  25. Fawzi W, Msamanga G, Renjifo B, et al. 2001. Predictors of intrauterine and intrapartum transmission of hiv-1 among tanzanian women. AIDS, 15(9): 1157–1165.

    Article  CAS  PubMed  Google Scholar 

  26. Fordyce E J, Singh T P, Nash D, et al. 2002. Survival rates in nyc in the era of combination art. J Acquir Immune Defic Syndr, 30(1): 111–118.

    Article  PubMed  Google Scholar 

  27. Frost S D, Liu Y, Pond S L, et al. 2005. Characterization of human immunodeficiency virus type 1 (hiv-1) envelope variation and neutralizing antibody responses during transmission of hiv-1 subtype b. J Virol, 79(10): 6523–6527.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Galli L, Puliti D, Chiappini E, et al. 2005. Lower mother-to-child hiv-1 transmission in boys is independent of type of delivery and antiretroviral prophylaxis: The italian register for hiv infection in children. J Acquir Immune Defic Syndr, 40(4): 479–485.

    Article  PubMed  Google Scholar 

  29. Ganesh L, Leung K, Lore K, et al. 2004. Infection of specific dendritic cells by ccr5-tropic human immunodeficiency virus type 1 promotes cell-mediated transmission of virus resistant to broadly neutralizing antibodies. J Virol, 78(21): 11980–11987.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Garcia P M, Kalish L A, Pitt J, et al. 1999. Maternal levels of plasma human immunodeficiency virus type 1 rna and the risk of perinatal transmission. Women and infants transmission study group. N Engl J Med, 341(6): 394–402.

    CAS  Google Scholar 

  31. Gonzalez N, Perez-Olmeda M, Mateos E, et al. 2010. A sensitive phenotypic assay for the determination of human immunodeficiency virus type 1 tropism. J Antimicrob Chemother, 65(12): 2493–2501.

    Article  CAS  PubMed  Google Scholar 

  32. Ho D D, Neumann A U, Perelson A S, et al. 1995. Rapid turnover of plasma virions and cd4 lymphocytes in hiv-1 infection. Nature, 373(6510): 123–126.

    Article  CAS  PubMed  Google Scholar 

  33. Ho S K, Coman R M, Bunger J C, et al. 2008. Drug-associated changes in amino acid residues in gag p2, p7(nc), and p6(gag)/p6(pol) in human immunodeficiency virus type 1 (hiv-1) display a dominant effect on replicative fitness and drug response. Virology, 378(2): 272–281.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. John-Stewart G, Mbori-Ngacha D, Ekpini R, et al. 2004. Breast-feeding and transmission of hiv-1. J Acquir Immune Defic Syndr, 35(2): 196–202.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Kong X, West J T, Zhang H, et al. 2008. The human immunodeficiency virus type 1 envelope confers higher rates of replicative fitness to perinatally transmitted viruses than to nontransmitted viruses. J Virol, 82(23): 11609–11618.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Koopman J, Simon C, Jacquez J, et al. 1988. Sexual partner selectiveness effects on homosexual hiv transmission dynamics. J Acquir Immune Defic Syndr, 1(5): 486–504.

    CAS  PubMed  Google Scholar 

  37. Kwiek J J, Mwapasa V, Milner D A, Jr., et al. 2006. Maternal-fetal microtransfusions and hiv-1 mother-to-child transmission in malawi. PLoS Med, 3(1): e10.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Lagaye S, Derrien M, Menu E, et al. 2001. Cell-to-cell contact results in a selective translocation of maternal human immunodeficiency virus type 1 quasispecies across a trophoblastic barrier by both transcytosis and infection. J Virol, 75(10): 4780–4791.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Lehman D A, Farquhar C. 2007. Biological mechanisms of vertical human immunodeficiency virus (hiv-1) transmission. Rev Med Virol, 17(6): 381–403.

    Article  PubMed  Google Scholar 

  40. Lewin S R, Vesanen M, Kostrikis L, et al. 1999. Use of real-time pcr and molecular beacons to detect virus replication in human immunodeficiency virus type 1-infected individuals on prolonged effective antiretroviral therapy. J Virol, 73(7): 6099–6103.

    PubMed Central  CAS  PubMed  Google Scholar 

  41. Lewis S H, Reynolds-Kohler C, Fox H E, et al. 1990. Hiv-1 in trophoblastic and villous hofbauer cells, and haematological precursors in eight-week fetuses. Lancet, 335(8689): 565–568.

    Article  CAS  PubMed  Google Scholar 

  42. Linghong Wang A W, Liwen Fang. 2005. Epidemic situation and prevention of hiv mtct. Maternal And Child Health Care Of China, 20(03): 4–8.

    Google Scholar 

  43. Mansky L M, Temin H M. 1995. Lower in vivo mutation rate of human immunodeficiency virus type 1 than that predicted from the fidelity of purified reverse transcriptase. J Virol, 69(8): 5087–5094.

    PubMed Central  CAS  PubMed  Google Scholar 

  44. Medley A, Garcia-Moreno C, Mcgill S, et al. 2004. Rates, barriers and outcomes of hiv serostatus disclosure among women in developing countries: Implications for prevention of mother-to-child transmission programmes. Bull World Health Organ, 82(4): 299–307.

    PubMed Central  PubMed  Google Scholar 

  45. Moore J P, Kitchen S G, Pugach P, et al. 2004. The ccr5 and cxcr4 coreceptors—central to understanding the transmission and pathogenesis of human immuno-deficiency virus type 1 infection. AIDS Res Hum Retroviruses, 20(1): 111–126.

    Article  CAS  PubMed  Google Scholar 

  46. Mouko A, Mbika-Cardorelle A, Mboungou V, et al. 2009. [orphans in brazzaville orphanages]. Sante, 19(1): 21–23.

    CAS  PubMed  Google Scholar 

  47. Mwanyumba F, Gaillard P, Inion I, et al. 2002. Placental inflammation and perinatal transmission of hiv-1. J Acquir Immune Defic Syndr, 29(3): 262–269.

    Article  PubMed  Google Scholar 

  48. Mwapasa V, Rogerson S J, Kwiek J J, et al. 2006. Maternal syphilis infection is associated with increased risk of mother-to-child transmission of hiv in malawi. AIDS, 20(14): 1869–1877.

    Article  PubMed  Google Scholar 

  49. Nduati R, John G, Mbori-Ngacha D, et al. 2000. Effect of breastfeeding and formula feeding on transmission of hiv-1: A randomized clinical trial. JAMA, 283(9): 1167–1174.

    Article  CAS  PubMed  Google Scholar 

  50. Ostergren M, Malyuta R. 2006. Elimination of hiv infection in infants in europe—challenges and demand for response. Semin Fetal Neonatal Med, 11(1): 54–57.

    Article  PubMed  Google Scholar 

  51. Rodriguez M A, Ding M, Ratner D, et al. 2009. High replication fitness and transmission efficiency of hiv-1 subtype c from india: Implications for subtype c predominance. Virology, 385(2): 416–424.

    Article  CAS  PubMed  Google Scholar 

  52. Rousseau C M, Nduati R W, Richardson B A, et al. 2004. Association of levels of hiv-1-infected breast milk cells and risk of mother-to-child transmission. J Infect Dis, 190(10): 1880–1888.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Ryland E G, Tang Y, Christie C D, et al. 2010. Sequence evolution of hiv-1 following mother-to-child transmission. J Virol, 84(23): 12437–12444.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Scarlatti G. 2004. Mother-to-child transmission of hiv-1: Advances and controversies of the twentieth centuries. AIDS Rev, 6(2): 67–78.

    CAS  PubMed  Google Scholar 

  55. Scarlatti G, Leitner T, Hodara V, et al. 1993. Neutralizing antibodies and viral characteristics in mother-to-child transmission of hiv-1. AIDS, 7Suppl 2: S45–48.

    Article  PubMed  Google Scholar 

  56. Taha T E, Nour S, Kumwenda N I, et al. 2005. Gender differences in perinatal hiv acquisition among african infants. Pediatrics, 115(2): e167–172.

    Article  PubMed  Google Scholar 

  57. Valente P, Main E K. 1990. Role of the placenta in perinatal transmission of hiv. Obstet Gynecol Clin North Am, 17(3): 607–616.

    CAS  PubMed  Google Scholar 

  58. Van’t Wout A B, Kootstra N A, Mulder-Kampinga G A, et al. 1994. Macrophage-tropic variants initiate human immunodeficiency virus type 1 infection after sexual, parenteral, and vertical transmission. J Clin Invest, 94(5): 2060–2067.

    Article  Google Scholar 

  59. Wabwire-Mangen F, Gray R H, Mmiro F A, et al. 1999. Placental membrane inflammation and risks of maternal-to-child transmission of hiv-1 in uganda. J Acquir Immune Defic Syndr, 22(4): 379–385.

    Article  CAS  PubMed  Google Scholar 

  60. Weber J, Weberova J, Carobene M, et al. 2006. Use of a novel assay based on intact recombinant viruses expressing green (egfp) or red (dsred2) fluorescent proteins to examine the contribution of pol and env genes to overall hiv-1 replicative fitness. J Virol Methods, 136(1–2): 102–117.

    Article  CAS  PubMed  Google Scholar 

  61. Wolinsky S M, Wike C M, Korber B T, et al. 1992. Selective transmission of human immunodeficiency virus type-1 variants from mothers to infants. Science, 255(5048): 1134–1137.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-hong Kong.

Additional information

Foundation items: The grants of National Science Foundation of China (30970162); Program of International Collaboration of Tianjin Municipal Science and Technology Commission (08ZCGHHZ01800).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chen, Xq., Liu, C. & Kong, Xh. The role of HIV replicative fitness in perinatal transmission of HIV. Virol. Sin. 26, 147–155 (2011). https://doi.org/10.1007/s12250-011-3180-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12250-011-3180-2

Key words

  • Human immunodeficiency virus (HIV)
  • Acquired immune deficiency syndrome (AIDS)
  • Mother-to-child transmission (MTCT)
  • Replicative fitness
  • Gp120