Skip to main content

Effect of siRNAs on HSV-1 plaque formation and relative expression levels of RR mRNA

Abstract

RNA interference (RNAi) is a process by which introduced small interfering RNA (siRNA) can cause the specific degradation of mRNA with identical sequences. The human herpes simplex virus type 1 (HSV-1) RR is composed of two distinct homodimeric subunits encoded by UL39 and UL40, respectively. In this study, we applied siRNAs targeting the UL39 and UL40 genes of HSV-1. We showed that synthetic siRNA silenced effectively and specifically UL39 and UL40 mRNA expression and inhibited HSV-1 replication. Our work offers new possibilities for RNAi as a genetic tool for inhibition of HSV-1 replication.

This is a preview of subscription content, access via your institution.

References

  1. Andino R. 2003. RNAi puts a lid on virus replication. Nat Biotechnol, 21: 629–630.

    Article  CAS  PubMed  Google Scholar 

  2. Bhuyan P K, Kariko K, Capodici J. 2004. Short interfering RNA-mediated inhibition of herpes simplex virus type 1 gene expression and function during infection of human keratinocytes. J Virol, 78: 10276–10281.

    Article  CAS  PubMed  Google Scholar 

  3. Brandt C R, Kintner R L, Pumfrey A M, et al. 1991. The herpes simplex virus ribonucleotide reductase is required for ocular virulence. J Gen Virol, 72: 2043–2049.

    Article  CAS  PubMed  Google Scholar 

  4. Cameron J M, Mcdougall I, Marsden H S, et al. 1988. Ribonucleotide reductase encoded by herpes simplex virus is a determinant of the pathogenicity of the virus in mice and a valid antiviral target. J Gen Virol, 69: 2607–2612.

    Article  CAS  PubMed  Google Scholar 

  5. Cory J G. 1988. Ribonucleotide reductase as a chemotherapeutic target. Adv Enzyme Regul, 27: 437–455.

    Article  CAS  PubMed  Google Scholar 

  6. David J G, Sandra K W. 1988. Herpes Simplex Virus Type 1-Induced Ribonucleotide Reductase Activity Is Dispensable for Virus Growth and DNA Synthesis: Isolation and Characterization of an ICP6 lacZ Insertion Mutant. J Virol, 62: 196–205.

    Google Scholar 

  7. Elbashir S M, Harborth J, Weber K, et al. 2002. Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods, 26: 199–213.

    Article  CAS  PubMed  Google Scholar 

  8. Frame M C, Marsden H S, Dutia B M. 1985. The ribonucleotide reductase induced by herpes simplex virus type 1 involves minimally a complex of two polypeptides (136K and 38K). J Gen Virol, 66: 1581–1587.

    Article  CAS  PubMed  Google Scholar 

  9. Honess R.W, Roizman B. 1973. Proteins specified by herpes simplex virus. XI. Identification and relative molar rates of synthesis of structural and non-structural herpes virus polypeptides in infected cells. J Virol, 12: 1347–1365.

    CAS  PubMed  Google Scholar 

  10. Honess R W, Roizman B. 1974. Regulation of herpes virus macromolecular synthesis.I. Cascade regulation of the synthesis of three groups of viral proteins. J Virol. 14:8–19.

    CAS  PubMed  Google Scholar 

  11. Holen T, Amarzguioui M, Wiiger M T, et al. 2002. Positional effects of short interfering RNAs targeting the human coagulation trigger Tissue Factor. Nucleic Acids Res, 30: 1757–1766.

    Article  CAS  PubMed  Google Scholar 

  12. Idowu A D, Fraser-Smith E B, Poffenberger K L, et al. 1992. Deletion of the herpes simplex virus type 1 ribonucleotide reductase gene alters virulence and latency in vivo. Antiviral Res, 17: 145–156.

    Article  CAS  PubMed  Google Scholar 

  13. Ingemarson R, Lankinen H. 1987. The herpes simplex virus type 1 ribonucleotide reductase is a tight complex of the type alpha 2 beta 2 composed of 40K and 140K proteins, of which the latter shows multiple forms due to proteolysis. Virology, 156: 417–422.

    Article  CAS  PubMed  Google Scholar 

  14. Jacobson J G, Leib A D, Goldstein D J, et al. 1989. A herpes simplex virus ribonucleotide reductase deletion mutant is defective for productive acute and reactivatable latent infections of mice and for replication in mouse cells. Virology, 173: 276–283.

    Article  CAS  PubMed  Google Scholar 

  15. Jiang M, Milner J. 2002. Selective silencing of viral gene expression in HPV-positive human cervical carcinoma cells treated with siRNA, a primer of RNA interference. Oncogene, 21: 6041–6048.

    Article  CAS  PubMed  Google Scholar 

  16. Kawasaki H, Suyama E, Iyo M, et al 2003. siRNAs generated by recombinant human Dicer induce specific and significant but target site-independent gene silencing in human cells. Nucl Acids Res, 31: 981–987.

    Article  CAS  PubMed  Google Scholar 

  17. Khvorova A, Reynolds A, Jayasena S D. 2003. Functional siRNAs and rniRNAs exhibit strand bias. Cell, 115: 209–216.

    Article  CAS  PubMed  Google Scholar 

  18. Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−ΔΔCT). Methods, 25: 402–408

    Article  CAS  PubMed  Google Scholar 

  19. Luo K Q, Chang DC. 2004. The gene-silencing efficiency of siRNA is strongly dependent on the local structure of mRNA at the targeted region. Biochem Biophys Res Commun, 318: 303–310.

    Article  CAS  PubMed  Google Scholar 

  20. Mcgeoch D J, Dalrymple M A, Davison A J, et al. 1988. The complete DNA sequences of the long unique region in the genome of herpes simplex virus type 1. J Gen Virol, 69: 1531–1574.

    Article  CAS  PubMed  Google Scholar 

  21. Preston V G, Coates J A, Rixon F J. 1983. Identification and characterization of a herpes simplex virus gene product required for encapsidation of virus DNA. J Virol, 45: 1056–1064.

    CAS  PubMed  Google Scholar 

  22. Preston V G, Palfreyman J W, Dutia B M. 1984. Identification of a herpes simplex virus type 1 polypeptide which is a component of the virus-induced ribonucleotide reductase. J Gen Virol, 65: 1457–1466

    Article  CAS  PubMed  Google Scholar 

  23. Pu Y, Liu L D, Ma S H. 2005. Analysis of siRNA interfering in the alpha 22 immediate early gene of HSV-1. Virol Sin, 20: 221–224.

    CAS  Google Scholar 

  24. Ren Z, Zhang M Y, Kitazato K, et al. 2008. Effect of siRNA on HSV-1 plaque formation and relative expression levels of UL39 mRNA. Arch Virol. 153: 1401–1406.

    Article  CAS  Google Scholar 

  25. Ren Z, Zhang C H, Wang L J, et al. 2010. In Vitro Anti-viral Activity of the Total Alkaloids from Tripterygium Hypoglaucum against Herpes Simplex Virus Type 1. Virol Sin, 25: 107–114.

    Article  CAS  PubMed  Google Scholar 

  26. Robins M J. 1999. Mechanism-based inhibition of ribonucleotide reductases: new mechanistic considerations and promising biological applications. Nucleosides Nucleotides, 18: 779–793.

    Article  CAS  PubMed  Google Scholar 

  27. Schubert S, Grunweller A, Erdmann V A, et al 2005. Local RNA target structure influences siRNA efficacy: systematic analysis of intentionally designed binding regions. J Mol Bio, 348: 883–893.

    Article  CAS  Google Scholar 

  28. Song E, Lee S K, Wang J, et al. 2003. RNA interference targeting Fas protects mice from fulminant hepatitis. Nat Med, 9: 347–351.

    Article  CAS  PubMed  Google Scholar 

  29. Szekeres T, Fritzer-Szekeres M, Elford H L. 1997. The enzyme ribonucleotide reductase: target for antitumor and anti-HIV therapy. Crit Rev Clin Lab Sci, 34: 503–528.

    Article  CAS  PubMed  Google Scholar 

  30. Thelander L, Reichard P. 1979. Reduction of ribonucleotides. Annu Rev Biochem, 48:133–158.

    Article  CAS  PubMed  Google Scholar 

  31. Vickers T A, Koo S, Bennett C F, et al 2003. Efficient reduction of target RNAs by small interfering RNA and RNase H-dependent antisense agents. A comparative analysis. J Biol Chem, 278: 7108–7118.

    Article  CAS  PubMed  Google Scholar 

  32. Yamada Y, Kimura H, Morishima T, et al. 1991. The pathogenicity of ribonucleotide reductase-null mutants of herpes simplex virus type 1 in mice. J Infect Dis, 164: 1091–1097.

    CAS  PubMed  Google Scholar 

  33. Zhu Q C, Ren Z, Zhang C Let al. 2007. Silencing HSV-1 gD expression in cultured cells by RNA interference. Chin J Virol, 23: 22–27.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi-fei Wang, Da-xiang Lu or Shu-min Zhang.

Additional information

These authors contributed equally to this work.

Foundation items: The Nation “863” Program of China (2006AA02A226); The Joint Funds of National Science Foundation of China (U0632010); The State Key Laboratory of Phytochemistry and Plant Resources in West China; Chinese Academy of Sciences (O807 B11211, O807E21211) and “211 grant of MOE”.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ren, Z., Li, S., Wang, Ql. et al. Effect of siRNAs on HSV-1 plaque formation and relative expression levels of RR mRNA. Virol. Sin. 26, 40–46 (2011). https://doi.org/10.1007/s12250-011-3162-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12250-011-3162-9

Key words

  • Small interfering RNA (siRNA)
  • Herpes simplex virus type I (HSV-1)
  • Ribonucleotide reductase (RR)
  • Gene