Skip to main content

Advertisement

SpringerLink
  • Log in
  1. Home
  2. Virologica Sinica
  3. Article
Construction and genetic analysis of murine hepatitis virus strain A59 Nsp16 temperature sensitive mutant and the revertant virus
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Crucial mutation in the exoribonuclease domain of nsp14 of PEDV leads to high genetic instability during viral replication

07 June 2021

Xiaoyu Niu, Fanzhi Kong, … Qiuhong Wang

The Establishment of Infectious Clone and Single Round Infectious Particles for Coxsackievirus A10

06 March 2020

Min Wang, Jingjing Yan, … Shuye Zhang

Effects of the S42 residue of the H1N1 swine influenza virus NS1 protein on interferon responses and virus replication

27 March 2018

Jinghua Cheng, Chunling Zhang, … Huili Liu

Identification of a new amino acid mutation in the HN protein of NDV involved in pathogenicity

20 December 2021

Xi Chen, Yanqing Jia, … Zengqi Yang

An overview of influenza A virus genes, protein functions, and replication cycle highlighting important updates

26 April 2022

Ravendra P. Chauhan & Michelle L. Gordon

Generation and characterization of UL41 null pseudorabies virus variant in vitro and in vivo

02 August 2018

Chao Ye, Jing Chen, … Guangzhi Tong

Infectivity and antigenicity of pseudoviruses with high-frequency mutations of SARS-CoV-2 identified in Portugal

27 January 2022

Hai-xin Wang, Li Zhang, … Wei-jin Huang

The Pivotal Roles of US3 Protein in Cell-to-Cell Spread and Virion Nuclear Egress of Duck Plague Virus

28 April 2020

Liyao Deng, Mingshu Wang, … Xiaoyue Chen

A novel amino acid site of N protein could affect the PRRSV-2 replication by regulating the viral RNA transcription

11 May 2022

Hua Deng, Ning Xin, … Yao Chen

Download PDF
  • Published: 18 February 2011

Construction and genetic analysis of murine hepatitis virus strain A59 Nsp16 temperature sensitive mutant and the revertant virus

  • Guo-hui Chang1,
  • Bao-jun Luo2,
  • Pin Lu2,
  • Lei Lin1,
  • Xiao-yan Wu1,
  • Jing Li1,
  • Yi Hu1 &
  • …
  • Qing-yu Zhu1 

Virologica Sinica volume 26, pages 19–29 (2011)Cite this article

  • 191 Accesses

  • 3 Citations

  • Metrics details

Abstract

Coronaviruses (CoVs) are generally associated with respiratory and enteric infections and have long been recognized as important pathogens of livestock and companion animals. Mouse hepatitis virus (MHV) is a widely studied model system for Coronavirus replication and pathogenesis. In this study, we created a MHV-A59 temperature sensitive (ts) mutant Wu”-ts18(cd) using the recombinant vaccinia reverse genetics system. Virus replication assay in 17C1-1 cells showed the plaque phenotype and replication characterization of constructed Wu”-ts18(cd) were indistinguishable from the reported ts mutant Wu”-ts18. Then we cultured the ts mutant Wu”-ts18(cd) at non-permissive temperature 39.5°C, which “forced” the ts recombinant virus to use second-site mutation to revert from a ts to a non-ts phenotype. Sequence analysis showed most of the revertants had the same single amino acid mutation at Nsp16 position 43. The single amino acid mutation at Nsp16 position 76 or position 130 could also revert the ts mutant Wu”-ts18 (cd) to non-ts phenotype, an additional independent mutation in Nsp13 position 115 played an important role on plaque size. The results provided us with genetic information on the functional determinants of Nsp16. This allowed us to build up a more reasonable model of CoVs replication-transcription complex.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. Ahola T, Laakkonen P, Vihinen H, et al. 1997. Critical residues of Semliki Forest Virus RNA capping enzyme involved in methyltransferase and guanylyltransferase-like activities. J Virol, 71: 392–397.

    CAS  PubMed  Google Scholar 

  2. Almazan F, Dediego M L, Galán C, et al. 2006. Construction of a severe acute respiratory syndrome coronavirus infectious cDNA clone and a replicon to study coronavirus RNA synthesis. J Virol, 80: 10900–10906.

    Article  CAS  PubMed  Google Scholar 

  3. Benarroch D, Selisko B, Locatelli G A, et al. 2004. The RNA helicase, nucleotide 5′-triphosphatase and RNA 5′-triphosphatase activities of Dengue virus protein NS3 are Mg2+ dependent and require a functional Walker B motif in the helicase catalytic core. Virology, 328: 208–218.

    Article  CAS  PubMed  Google Scholar 

  4. Brian D A, Baric R S. 2005. Coronavirus genome structure and replication. Curr Top Microbiol Immunol, 287: 1–30.

    Article  CAS  PubMed  Google Scholar 

  5. Brockway S M, Denison M R. 2005. Mutagenesis of the murine hepatitis virus nsp1-coding region identifies residues important for protein processing, viral RNA synthesis, and viral replication. Virology, 340: 209–223.

    Article  CAS  PubMed  Google Scholar 

  6. Bujnicki J M, Rychlewski L. 2002. In silico identification, structure prediction and phylogenetic analysis of the 2′-O-ribose (cap 1) methyltransferase domain in the large structural protein of ssRNA negative-strand viruses. Protein Eng, 15: 101–108.

    Article  CAS  PubMed  Google Scholar 

  7. Casais R, Thiel V, Siddell S G, et al. 2001. Reverse genetics system for the avian coronavirus infectious bronchitis virus. J Virol, 75: 12359–12369.

    Article  CAS  PubMed  Google Scholar 

  8. Coley S E, Lavi E, Sawicki S G, et al. 2005. Recombinant mouse hepatitis virus strain A59 from cloned, full-length cDNA replicates to high titers in vitro and is fully pathogenic in vivo. J Virol, 79: 3097–3106.

    Article  CAS  PubMed  Google Scholar 

  9. Decroly E, Imbert I, Coutard B, et al. 2008. Coronavirus nonstructural protein 16 is a cap-0 binding enzyme possessing (Nucleoside-2′O)-methyltransferase activity. J Virol, 82: 8071–8084.

    Article  CAS  PubMed  Google Scholar 

  10. Drosten C, Gunther S, Preiser W, et al. 2003. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med, 348: 1967–1976.

    Article  CAS  PubMed  Google Scholar 

  11. Eckerle L D, Lu X, Sperry S M, L, et al. 2007. High fidelity of murine hepatitis virus replication is decreased in nsp14 exoribonuclease mutants. J Virol, 81: 12135–12144.

    Article  CAS  PubMed  Google Scholar 

  12. Egloff M P, Benarroch D, Selisko B, et al. 2002. An RNA cap (nucleoside-2′O-)-methyltransferase in the flavivirus RNA polymerase NS5: crystal structure and functional characterization. EMBO J, 21: 2757–2768.

    Article  CAS  PubMed  Google Scholar 

  13. Egloff M P, Decroly E, Malet H, et al. 2007. Structural and functional analysis of methylation and 5′ RNA sequence requirements of short capped RNAs by the methyltransferase domain of dengue virus NS5. J Mol Biol, 372: 723–736.

    Article  CAS  PubMed  Google Scholar 

  14. Egloff M P, Ferron F, Campanacci V, et al. 2004. The severe acute respiratory syndrome-coronavirus replicative protein nsp9 is a single-stranded RNA-binding subunit unique in the RNA virus world. Proc Natl Acad Sci USA, 101: 3792–3796.

    Article  CAS  PubMed  Google Scholar 

  15. Enjuanes L, Sola I, Alonso S, et al. 2005. Coronavirus reverse genetics and development of vectors for gene expression. Curr Top Microbiol Immunol, 287: 161–197.

    Article  CAS  PubMed  Google Scholar 

  16. Ginalski K, Godzik A, Rychlewski L. 2006. Novel SARS unique AdoMet-dependent methyltransferase. Cell Cycle, 5: 2414–2416.

    Article  CAS  PubMed  Google Scholar 

  17. Guarino L A, Bhardwaj K, Dong W, et al. 2005. Mutational analysis of the SARS virus Nsp15 endoribonuclease, identification of residues affecting hexamer formation. J Mol Biol, 353: 106–1117.

    Article  Google Scholar 

  18. Harcourt B H, Jukneliene D, Kanjanahaluethai A, et al. 2004. Identification of severe acute respiratory syndrome coronavirus replicase products and characterization of papain-like protease activity. J Virol, 78: 13600–13612.

    Article  CAS  PubMed  Google Scholar 

  19. Ivanov K A, Ziebuhr J. 2004. Human coronavirus 229E nonstructural protein 13, characterization of duplex-unwinding, nucleoside triphosphatase, and RNA 5′-triphosphatase activities. J Virol, 78: 7833–7838.

    Article  CAS  PubMed  Google Scholar 

  20. Roth-Cross J K, Stokes H, Chang G, et al. 2009. Organ specific attenuation of Murine Hepatitis Virus Strain A59 by replacement of catalytic residues in the putative viral cyclic phosphodiesterase ns2. J Virol, 83: 3743–53.

    Article  CAS  PubMed  Google Scholar 

  21. Kozbial P Z, Mushegian A R. 2005. Natural history of S-adenosylmethionine-binding proteins. BMC Struct Biol, 5: 19.

    Article  PubMed  Google Scholar 

  22. Ksiazek T G, Erdman D, Goldsmith C S, et al. 2003. A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med, 348: 1953–1966.

    Article  CAS  PubMed  Google Scholar 

  23. Martin J L, McMillan F M. 2002. SAM (dependent) I AM: the S-adenosylmethionine-dependent methyltransferase fold. Curr Opin Struct Biol, 12: 783–793.

    Article  CAS  PubMed  Google Scholar 

  24. Masters P S. 2006. The molecular biology of coronaviruses. Adv Virus Res, 66: 193–292.

    Article  CAS  PubMed  Google Scholar 

  25. Masters P S, Rottier P J M. 2005. Coronavirus reverse genetics by targeted RNA recombination. Curr Top Microbiol Immunol, 287: 133–159.

    Article  CAS  PubMed  Google Scholar 

  26. Putics A, Filipowicz W, Hall J, et al. 2005. ADP-ribose-1-monophosphatase, a conserved coronavirus enzyme that is dispensable for viral replication in tissue culture. J Virol, 79: 12721–12731.

    Article  CAS  PubMed  Google Scholar 

  27. Ray D, Shah A, Tilgner M, et al. 2006. West Nile virus 5′-cap structure is formed by sequential guanine N-7 and ribose 2′-O methylations by nonstructural protein 5. J Virol 80: 8362–8370.

    Article  CAS  PubMed  Google Scholar 

  28. Sawicki S G, Sawicki D L, Siddell S G. 2007. A contemporary view of coronavirus transcription. J Virol, 81: 20–29.

    Article  CAS  PubMed  Google Scholar 

  29. Sawicki S G, Sawicki D L, Younker D, et al. 2005. Functional and genetic analysis of coronavirus replicase transcriptase proteins. PLoS Pathogens, 1: e39.

    Article  PubMed  Google Scholar 

  30. Sawicki D, Wang T, Sawicki S. 2001. The RNA structures engaged in replication and transcription of the A59 strain of mouse hepatitis virus. J Gen Virol, 82: 385–396.

    CAS  PubMed  Google Scholar 

  31. Schelle B, Karl N, Ludewig B, et al. 2005. Selective replication of coronavirus genomes that express nucleocapsid protein. J Virol, 79: 6620–6630.

    Article  CAS  PubMed  Google Scholar 

  32. Siddell S G, Ziebuhr J, Snijder E J. 2005. Coronaviruses, toroviruses, and arteriviruses. In: Virology (Mahy B W J and ter Meulen V ed.), Hodder Arnold, London, United Kingdom: Topley & Wilson’s microbiology and microbial infections. p823–856.

    Google Scholar 

  33. Sturman L S, Eastwood C, Frana M F, et al. 1987. Temperature-sensitive mutants of MHV-A59. Adv Exp Med Biol, 218: 159–168.

    CAS  PubMed  Google Scholar 

  34. Thiel V. 2007. Reverse genetic analysis of coronavirus replication. In: Coronaviruses: molecular and cellular biology (Thiel V. ed). Norfolk, United Kingdom: Caister Academic Press, p109–132.

    Google Scholar 

  35. Thiel V, Herold J, Schelle B, et al. 2001. Infectious RNA transcribed in vitro from a cDNA copy of the human coronavirus genome. J Gen Virol, 82: 1273–1281.

    CAS  PubMed  Google Scholar 

  36. Thiel V, Siddell S G. 2005. Reverse genetics of coronaviruses using vaccinia virus vectors. Curr Top Microbiol Immunol, 287: 199–227.

    Article  CAS  PubMed  Google Scholar 

  37. Von Grotthuss M, Wyrwicz L S, Rychlewski L. 2003. mRNA cap-1-methyltransferase in the SARS genome. Cell, 113: 701–702.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China

    Guo-hui Chang, Lei Lin, Xiao-yan Wu, Jing Li, Yi Hu & Qing-yu Zhu

  2. Changchun Changsheng Life Sciences Limited, Changchun, 130103, China

    Bao-jun Luo & Pin Lu

Authors
  1. Guo-hui Chang
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Bao-jun Luo
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Pin Lu
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Lei Lin
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Xiao-yan Wu
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. Jing Li
    View author publications

    You can also search for this author in PubMed Google Scholar

  7. Yi Hu
    View author publications

    You can also search for this author in PubMed Google Scholar

  8. Qing-yu Zhu
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Guo-hui Chang.

Additional information

Fundation item: Research Grants from State Key Laboratory of Pathogen and Biosecurity (SKLPBS0918).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chang, Gh., Luo, Bj., Lu, P. et al. Construction and genetic analysis of murine hepatitis virus strain A59 Nsp16 temperature sensitive mutant and the revertant virus. Virol. Sin. 26, 19–29 (2011). https://doi.org/10.1007/s12250-011-3145-x

Download citation

  • Received: 23 April 2010

  • Accepted: 19 November 2010

  • Published: 18 February 2011

  • Issue Date: February 2011

  • DOI: https://doi.org/10.1007/s12250-011-3145-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Key words

  • Genetic analysis
  • MHV-A59
  • Temperature-sensitive mutant
  • Revertant
  • Nonstructural proteins (Nsp)
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not logged in - 3.238.250.73

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.