Strategies for antiviral screening targeting early steps of virus infection

Abstract

Viral infection begins with the entry of the virus into the host target cell and initiates replication. For this reason, the virus entry machinery is an excellent target for antiviral therapeutics. In general, a virus life cycle includes several major steps: cell-surface attachment, entry, replication, assembly, and egress, while some viruses involve another stage called latency. The early steps of the virus life cycle include virus attachment, receptor binding, and entry. These steps involve the initial interactions between a virus and the host cell and thus are major determinants of the tropism of the virus infection, the nature of the virus replication, and the diseases resulting from the infection. Owing to the pathological importance of these early steps in the progress of viral infectious diseases, the development of inhibitors against these steps has been the focus of the pharmaceutical industry. In this review, Herpes Simplex Virus (HSV), Hepatitis C Virus (HCV), and Human Enterovirus 71 (EV71) were used as representatives of enveloped DNA, enveloped RNA, and non-enveloped viruses, respectively. The current mechanistic understanding of their attachment and entry, and the strategies for antagonist screenings are summarized herein.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Agnello V, Abel G, Elfahal M, et al. 1999. Hepatitis C virus and other flaviviridae viruses enter cells via low density lipoprotein receptor. Proc Natl Acad Sci USA, 96: 12766–12771.

    Article  PubMed  CAS  Google Scholar 

  2. 2.

    Arduino P G, Porter S R. 2008. Herpes Simplex Virus Type 1 infection: overview on relevant clinicopathological features. J Oral Pathol Med, 37: 107–121.

    PubMed  Google Scholar 

  3. 3.

    Atanasiu D, Whitbeck J C, de Leon MP, et al. 2010. Bimolecular complementation defines functional regions of HSV gB that are involved with gH/gL as necessary steps leading to cell fusion. J Virol, 84: 3825–3834.

    Article  PubMed  CAS  Google Scholar 

  4. 4.

    Banerjee M, Khayat R, Walukiewicz H E, et al. 2009. Dissecting the functional domains of a nonenveloped virus membrane penetration peptide. J Virol, 83: 6929–6933.

    Article  PubMed  CAS  Google Scholar 

  5. 5.

    Barth H, Schafer C, Adah M I, et al. 2003. Cellular binding of hepatitis C virus envelope glycoprotein E2 requires cell surface heparan sulfate. J Biol Chem, 278: 41003–41012.

    Article  PubMed  Google Scholar 

  6. 6.

    Bartosch B, Cosset F L. 2006. Cell entry of hepatitis C virus. Virology, 348: 1–12.

    Article  PubMed  CAS  Google Scholar 

  7. 7.

    Basu A, Kanda T, Beyene A, et al. 2007. Sulfated homologues of heparin inhibit hepatitis C virus entry into mammalian cells. J Virol, 81: 3933–3941.

    Article  PubMed  CAS  Google Scholar 

  8. 8.

    Bender F C, Whitbeck J C, Lou H, et al. 2005. Herpes simplex virus glycoprotein B binds to cell surfaces independently of heparan sulfate and blocks virus entry. J Virol, 79: 11588–11597.

    Article  PubMed  CAS  Google Scholar 

  9. 9.

    Bertaux C, Dragic T. 2006. Different domains of CD81 mediate distinct stages of hepatitis C virus pseudoparticle entry. J Virol, 80: 4940–4948.

    Article  PubMed  CAS  Google Scholar 

  10. 10.

    Bevilacqua F, Marcello A, Toni M, et al. 1991. Acyclovir resistance/susceptibility in herpes simplex virus type 2 sequential isolates from an AIDS patient. J Acquir Immune Defic Syndr, 4: 967–969.

    PubMed  CAS  Google Scholar 

  11. 11.

    Brandenburg B, Lee L Y, Lakadamyali M, et al. 2007. Imaging poliovirus entry in live cells. PLoS Biol, 5: e183.

    Article  PubMed  CAS  Google Scholar 

  12. 12.

    Budkowska A. 2009. Mechanism of cell infection with hepatitis C virus (HCV)-a new paradigm in virus-cell interaction. Pol J Microbiol, 58: 93–98.

    PubMed  CAS  Google Scholar 

  13. 13.

    Burlone M E, Budkowska A. 2009. Hepatitis C virus cell entry: role of lipoproteins and cellular receptors. J Gen Virol, 90: 1055–1070.

    Article  PubMed  CAS  Google Scholar 

  14. 14.

    Campadelli-Fiume G, Amasio M, Avitabile E, et al. 2007. The multipartite system that mediates entry of herpes simplex virus into the cell. Rev Med Virol, 17: 313–326.

    Article  PubMed  CAS  Google Scholar 

  15. 15.

    Chandran K, Farsetta D L, Nibert M L. 2002. Strategy for nonenveloped virus entry: a hydrophobic conformer of the reovirus membrane penetration protein micro 1 mediates membrane disruption. J Virol, 76: 9920–9933.

    Article  PubMed  CAS  Google Scholar 

  16. 16.

    Codran A, Royer C, Jaeck D, et al. 2006. Entry of hepatitis C virus pseudotypes into primary human hepatocytes by clathrin-dependent endocytosis. J Gen Virol, 87: 2583–2593.

    Article  PubMed  CAS  Google Scholar 

  17. 17.

    Cole N L, Grose C. 2003. Membrane fusion mediated by herpesvirus glycoproteins: the paradigm of varicella-zoster virus. Rev Med Virol, 13: 207–222.

    Article  PubMed  CAS  Google Scholar 

  18. 18.

    De Clercq E. 2004. Antiviral drugs in current clinical use. J Clin Virol, 30: 115–133.

    Article  PubMed  CAS  Google Scholar 

  19. 19.

    Dicker I B, Blasecki J W, Seetharam S. 1995. Herpes simplex type1:lacZ recombinant viruses. II. Microtiter plate-based colorimetric assays for the discovery of new antiherpes agents and the points at which such agents disrupt the viral replication cycle. Antiviral Res, 28: 213–224.

    Article  PubMed  CAS  Google Scholar 

  20. 20.

    Dreux M, Dao Thi V L, Fresquet J, et al. 2009. Receptor complementation and mutagenesis reveal SR-BI as an essential HCV entry factor and functionally imply its intra- and extra-cellular domains. PLoS Pathog, 5:e1000310.

    Article  PubMed  CAS  Google Scholar 

  21. 21.

    Duan R, de Vries R D, Osterhaus A D, et al. 2008. Acyclovir-resistant corneal HSV-1 isolates from patients with herpetic keratitis. J Infect Dis, 198: 659–663.

    Article  PubMed  CAS  Google Scholar 

  22. 22.

    Dubuisson J, Helle F, Cocquerel L. 2008. Early steps of the hepatitis C virus life cycle. Cell Microbiol, 10: 821–827.

    Article  PubMed  CAS  Google Scholar 

  23. 23.

    Falanga A, Cantisani M, Pedone C, et al. 2009. Membrane fusion and fission: enveloped viruses. Protein Pept Lett, 16: 751–759.

    Article  PubMed  CAS  Google Scholar 

  24. 24.

    Falconer M M, Gilbert J M, Roper A M, et al. 1995. Rotavirus-induced fusion from without in tissue culture cells. J Virol, 69: 5582–5591.

    PubMed  CAS  Google Scholar 

  25. 25.

    Feng Z H, Wang Q C, Nie Q H, et al. 2004. DC-SIGN: binding receptor for HCV? World J Gastroenterol, 10: 925–929.

    PubMed  CAS  Google Scholar 

  26. 26.

    Field H, McMillan A, Darby G. 1981. The sensitivity of acyclovir-resistant mutants of herpes simplex virus to other antiviral drugs. J Infect Dis, 143: 281–285.

    PubMed  CAS  Google Scholar 

  27. 27.

    Garner J A. 2003. Herpes simplex virion entry into and intracellular transport within mammalian cells. Adv Drug Deliv Rev, 55: 1497–1513.

    Article  PubMed  CAS  Google Scholar 

  28. 28.

    Ghukasyan V, Hsu Y Y, Kung S H, et al. 2007. Application of fluorescence resonance energy transfer resolved by fluorescence lifetime imaging microscopy for the detection of enterovirus 71 infection in cells. J Biomed Opt, 12: 1–8.

    Article  CAS  Google Scholar 

  29. 29.

    Grondin B, DeLuca N. 2000. Herpes simplex virus type 1 ICP4 promotes transcription preinitiation complex formation by enhancing the binding of TFIID to DNA. J Virol, 74: 11504–11510.

    Article  PubMed  CAS  Google Scholar 

  30. 30.

    Heo H T. 2008. A potential role of the heparan sulfate in the hepatitis C virus attachment. Acta Virol, 52: 7–15.

    CAS  Google Scholar 

  31. 31.

    Han Q, Xu C, Wu C, et al. 2009. Compensatory mutations in NS3 and NS5A proteins enhance the virus production capability of hepatitis C reporter virus. Virus Res, 145: 63–73.

    Article  PubMed  CAS  Google Scholar 

  32. 32.

    Hannah B P, Cairns T M, Bender F C, et al. 2009. Herpes simplex virus glycoprotein B associates with target membranes via its fusion loops. J Virol, 83: 6825–6836.

    Article  PubMed  CAS  Google Scholar 

  33. 33.

    Heldwein E E, Krummenacher C. 2008. Entry of herpesviruses into mammalian cells. Cell Mol Life Sci, 65: 1653–1668.

    Article  PubMed  CAS  Google Scholar 

  34. 34.

    Helle F, Dubuisson J. 2008. Hepatitis C virus entry into host cells. Cell Mol Life Sci, 65: 100–112.

    Article  PubMed  CAS  Google Scholar 

  35. 35.

    Hsu M, Zhang J, Flint M, et al. 2003. Hepatitis C virus glycoproteins mediate pH-dependent cell entry of pseudotyped retroviral particles. Proc Natl Acad Sci USA, 100: 7271–7276.

    Article  PubMed  CAS  Google Scholar 

  36. 36.

    Iro M, Witteveldt J, Angus A G, et al. 2009. A reporter cell line for rapid and sensitive evaluation of hepatitis C virus infectivity and replication. Antiviral Res, 83: 148–155.

    Article  PubMed  CAS  Google Scholar 

  37. 37.

    Kalia M, Jameel S. 2009. Virus entry paradigms. Amino Acids, DOI: 10.1007/s00726-009-0363-3.

  38. 38.

    Koutsoudakis G, Kaul A, Steinmann E, et al. 2006. Characterization of the early steps of hepatitis C virus infection by using luciferase reporter viruses. J Virol, 80: 5308–5320.

    Article  PubMed  CAS  Google Scholar 

  39. 39.

    Laquerre S, Argnani R, Anderson D B, et al. 1998. Heparan sulfate proteoglycan binding by herpes simplex virus type 1 glycoproteins B and C, which differ in their contributions to virus attachment, penetration, and cell-to-cell spread. J Virol, 72: 6119–6130.

    PubMed  CAS  Google Scholar 

  40. 40.

    Lavanchy D. 2009. The global burden of hepatitis C. Liver Int, 29Suppl 1: 74–81.

    Article  PubMed  Google Scholar 

  41. 41.

    Lavillette D, Bartosch B, Nourrisson D, et al. 2006. Hepatitis C virus glycoproteins mediate low pH-dependent membrane fusion with liposomes. J Biol Chem, 281: 3909–3917.

    Article  PubMed  CAS  Google Scholar 

  42. 42.

    Lee J C, Shih Y F, Hsu S P, et al. 2003. Development of a cell-based assay for monitoring specific hepatitis C virus NS3/4A protease activity in mammalian cells. Anal Biochem, 316: 162–170.

    Article  PubMed  CAS  Google Scholar 

  43. 43.

    Lee J C, Yu M C, Lien T W, et al. 2005. High-throughput cell-based screening for hepatitis C virus NS3/4A protease inhibitors. Assay Drug Dev Technol, 3: 385–392.

    Article  PubMed  CAS  Google Scholar 

  44. 44.

    Leung W C. 1980. Cooperation between herpes simplex virus specific alpha protein and host cell RNA polymerase II in the transcription of viral deoxypyrimidine kinase. Can J Microbiol, 26: 401–404.

    Article  PubMed  CAS  Google Scholar 

  45. 45.

    Liu Y X, Xie J J, He Y X, et al. 2008. [Study of the clinical and laboratory features of hand-foot-mouth disease]. Chinese J Exp Clin Virol, 22: 475–477.

    Google Scholar 

  46. 46.

    Lozach P Y, Amara A, Bartosch B, et al. 2004. C-type lectins L-SIGN and DC-SIGN capture and transmit infectious hepatitis C virus pseudotype particles. J Biol Chem, 279: 32035–45.

    Article  PubMed  CAS  Google Scholar 

  47. 47.

    Ludwig I S, Lekkerkerker A N, Depla E, et al. 2004. Hepatitis C virus targets DC-SIGN and L-SIGN to escape lysosomal degradation. J Virol, 78: 8322–8332.

    Article  PubMed  CAS  Google Scholar 

  48. 48.

    Madan R P, Mesquita P M, Cheshenko N, et al. 2007. Molecular umbrellas: a novel class of candidate topical microbicides to prevent human immunodeficiency virus and herpes simplex virus infections. J Virol, 81: 7636–7646.

    Article  PubMed  CAS  Google Scholar 

  49. 49.

    Mann A M, Rusert P, Berlinger L, et al. 2009. HIV sensitivity to neutralization is determined by target and virus producer cell properties. AIDS 23: 1659–1667.

    Article  PubMed  Google Scholar 

  50. 50.

    Morfin F, Thouvenot D. 2003. Herpes simplex virus resistance to antiviral drugs. J Clin Virol, 26: 29–37.

    Article  PubMed  CAS  Google Scholar 

  51. 51.

    Morikawa K, Zhao Z, Date T, et al. 2007. The roles of CD81 and glycosaminoglycans in the adsorption and uptake of infectious HCV particles. J Med Virol, 79: 714–723.

    Article  PubMed  CAS  Google Scholar 

  52. 52.

    Mudhakir D, Harashima H. 2009. Learning from the viral journey: how to enter cells and how to overcome intracellular barriers to reach the nucleus. AAPS J, 11: 65–77.

    Article  PubMed  Google Scholar 

  53. 53.

    Netski D M, Mosbruger T, Depla E, et al. 2005. Humoral immune response in acute hepatitis C virus infection. Clin Infect Dis, 41: 667–675.

    Article  PubMed  CAS  Google Scholar 

  54. 54.

    Nishimura Y, Shimojima M, Tano Y, et al. 2009. Human P-selectin glycoprotein ligand-1 is a functional receptor for enterovirus 71. Nat Med, 15: 794–797.

    Article  PubMed  CAS  Google Scholar 

  55. 55.

    O’Donnell C D, Tiwari V, Oh M J, et al. 2006. A role for heparan sulfate 3-O-sulfotransferase isoform 2 in herpes simplex virus type 1 entry and spread. Virology, 346: 452–459.

    Article  PubMed  CAS  Google Scholar 

  56. 56.

    Ortner B, Huang C W, Schmid D, et al. 2009. Epidemiology of enterovirus types causing neurological disease in Austria 1999–2007: detection of clusters of echovirus 30 and enterovirus 71 and analysis of prevalent genotypes. J Med Virol, 81: 317–324.

    Article  PubMed  CAS  Google Scholar 

  57. 57.

    Owsianka A M, Timms J M, Tarr A W, et al. 2006. Identification of conserved residues in the E2 envelope glycoprotein of the hepatitis C virus that are critical for CD81 binding. J Virol, 80: 8695–704.

    Article  PubMed  CAS  Google Scholar 

  58. 58.

    Patel K P, Bergelson J M. 2009. Receptors identified for hand, foot and mouth virus. Nat Med, 15: 728–729.

    Article  PubMed  CAS  Google Scholar 

  59. 59.

    Pietschmann T, Kaul A, Koutsoudakis G, et al. 2006. Construction and characterization of infectious intragenotypic and intergenotypic hepatitis C virus chimeras. Proc Natl Acad Sci USA, 103: 7408–7413.

    Article  PubMed  CAS  Google Scholar 

  60. 60.

    Ploss A, Evans M J, Gaysinskaya V A, et al. 2009. Human occludin is a hepatitis C virus entry factor required for infection of mouse cells. Nature 457: 882–886.

    Article  PubMed  CAS  Google Scholar 

  61. 61.

    Popescu C I, Dubuisson J. Role of lipid metabolism in hepatitis C virus assembly and entry. Biol Cell, 102:63–74.

  62. 62.

    Rajcani J, Vojvodova A. 1998. The role of herpes simplex virus glycoproteins in the virus replication cycle. Acta Virol, 42: 103–118.

    PubMed  CAS  Google Scholar 

  63. 63.

    Ranganathan S, Singh S, Poh C L, et al. 2002. The hand, foot and mouth disease virus capsid: sequence analysis and prediction of antigenic sites from homology modelling. Appl Bioinformatics, 1: 43–52.

    PubMed  CAS  Google Scholar 

  64. 64.

    Reske A, Pollara G, Krummenacher C, et al. 2007. Understanding HSV-1 entry glycoproteins. Rev Med Virol, 17: 205–215.

    Article  PubMed  CAS  Google Scholar 

  65. 65.

    Schinazi R F, Nahmias A J. 1982. Different in vitro effects of dual combinations of anti-herpes simplex virus compounds. Am J Med, 73: 40–48.

    Article  PubMed  CAS  Google Scholar 

  66. 66.

    Schwarz A K, Grove J, Hu K, et al. 2009. Hepatoma cell density promotes claudin-1 and scavenger receptor BI expression and hepatitis C virus internalization. J Virol, 83: 12407–12414.

    Article  PubMed  CAS  Google Scholar 

  67. 67.

    Smith J S, Robinson N J. 2002. Age-specific prevalence of infection with herpes simplex virus types 2 and 1: a global review. J Infect Dis, 186Suppl 1: S3–28.

    Article  PubMed  Google Scholar 

  68. 68.

    Spear PG. 2004. Herpes simplex virus: receptors and ligands for cell entry. Cell Microbiol, 6: 401–410.

    Article  PubMed  CAS  Google Scholar 

  69. 69.

    Stranska R, Schuurman R, Scholl D R, et al. 2004. ELVIRA HSV, a yield reduction assay for rapid herpes simplex virus susceptibility testing. Antimicrob Agents Chemother, 48: 2331–2333.

    Article  PubMed  CAS  Google Scholar 

  70. 70.

    Tanaka M, Kodaira H, Nishiyama Y, et al. 2004. Construction of recombinant herpes simplex virus type I expressing green fluorescent protein without loss of any viral genes. Microbes Infect, 6: 485–493.

    Article  PubMed  CAS  Google Scholar 

  71. 71.

    Tani H, Komoda Y, Matsuo E, et al. 2007. Replication-competent recombinant vesicular stomatitis virus encoding hepatitis C virus envelope proteins. J Virol, 81: 8601–8612.

    Article  PubMed  CAS  Google Scholar 

  72. 72.

    Taylor T J, Knipe D M. 2009. The use of green fluorescent fusion proteins to monitor herpes simplex virus replication. Methods Mol Biol, 515: 239–248.

    Article  PubMed  CAS  Google Scholar 

  73. 73.

    Trybala E, Liljeqvist J A, Svennerholm B, et al. 2000. Herpes simplex virus types 1 and 2 differ in their interaction with heparan sulfate. J Virol, 74: 9106–9114.

    Article  PubMed  CAS  Google Scholar 

  74. 74.

    Tscherne D M, Jones C T, Evans M J, et al. 2006. Time- and temperature-dependent activation of hepatitis C virus for low-pH-triggered entry. J Virol, 80: 1734–1741.

    Article  PubMed  CAS  Google Scholar 

  75. 75.

    Wang Q C, Feng Z H, Nie Q H, et al. 2004. DC-SIGN: binding receptors for hepatitis C virus. Chin Med J (Engl), 117: 1395–1400.

    CAS  Google Scholar 

  76. 76.

    Wang S M, Ho T S, Shen C F, et al. 2008. Enterovirus 71, one virus and many stories. Pediatr Neonatol, 49: 113–115.

    Article  PubMed  Google Scholar 

  77. 77.

    Wang Y C, Kao C L, Liu W T, et al. 2002. A cell line that secretes inducibly a reporter protein for monitoring herpes simplex virus infection and drug susceptibility. J Med Virol, 68: 599–605.

    Article  PubMed  CAS  Google Scholar 

  78. 78.

    Whidby J, Mateu G, Scarborough H, et al. 2009. Blocking hepatitis C virus infection with recombinant form of envelope protein 2 ectodomain. J Virol, 83: 11078–11089.

    Article  PubMed  CAS  Google Scholar 

  79. 79.

    Wright C C, Wisner T W, Hannah B P, et al. 2009. Fusion between perinuclear virions and the outer nuclear membrane requires the fusogenic activity of herpes simplex virus gB. J Virol, 83: 11847–11856.

    Article  PubMed  CAS  Google Scholar 

  80. 80.

    Wymer J P, Chung T D, Chang Y N, et al. 1989. Identification of immediate-early-type cis-response elements in the promoter for the ribonucleotide reductase large subunit from herpes simplex virus type 2. J Virol, 63: 2773–2784.

    PubMed  CAS  Google Scholar 

  81. 81.

    Yamayoshi S, Yamashita Y, Li J, et al. 2009. Scavenger receptor B2 is a cellular receptor for enterovirus 71. Nat Med, 15: 798–801.

    Article  PubMed  CAS  Google Scholar 

  82. 82.

    Yang B, Chuang H, Yang K D. 2009. Sialylated glycans as receptor and inhibitor of enterovirus 71 infection to DLD-1 intestinal cells. Virol J, 6: 141.

    Article  PubMed  CAS  Google Scholar 

  83. 83.

    Zahn A, Allain J P. 2005. Hepatitis C virus and hepatitis B virus bind to heparin: purification of largely IgG-free virions from infected plasma by heparin chromatography. J Gen Virol, 86: 677–685.

    Article  PubMed  CAS  Google Scholar 

  84. 84.

    Zeisel M B, Barth H, Schuster C, et al. 2009. Hepatitis C virus entry: molecular mechanisms and targets for antiviral therapy. Front Biosci, 14: 3274–3285.

    Article  PubMed  CAS  Google Scholar 

  85. 85.

    Zeisel M B, Baumert T F. 2009. HCV entry and neutralizing antibodies: lessons from viral variants. Future Microbiol, 4: 511–517.

    Article  PubMed  CAS  Google Scholar 

  86. 86.

    Ziegler S, Kronenberger B, Albrecht B A, et al. 2009. Development and evaluation of a FACS-based medium-throughput assay for HCV entry inhibitors. J Biomol Screen, 14: 620–626.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tao Peng.

Additional information

Foundation items: National Basic Research Program (973) (2009CB522300, 2010CB530100); Chinese Academy of Sciences (KSCX1-YW-10); Science and Technology Program of Guangzhou, China (2007Z1-E0111).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Peng, T. Strategies for antiviral screening targeting early steps of virus infection. Virol. Sin. 25, 281–293 (2010). https://doi.org/10.1007/s12250-010-3135-z

Download citation

Key words

  • Virus Infection
  • Antiviral therapeutics
  • Virus life cycle
  • Inhibitor screening