Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Virologica Sinica
  3. Article

Immunogenicity of the spike glycoprotein of Bat SARS-like coronavirus

  • Published: 12 February 2010
  • Volume 25, pages 36–44, (2010)
  • Cite this article
Download PDF
Virologica Sinica
Immunogenicity of the spike glycoprotein of Bat SARS-like coronavirus
Download PDF
  • Yu-xuan Hou1,
  • Cheng Peng1,
  • Zheng-gang Han1,
  • Peng Zhou1,
  • Ji-guo Chen2 &
  • …
  • Zheng-li Shi1 
  • 4823 Accesses

  • 2 Citations

  • 118 Altmetric

  • 2 Mentions

  • Explore all metrics

Abstract

A group of SARS-like coronaviruses (SL-CoV) have been identified in horseshoe bats. Despite SL-CoVs and SARS-CoV share identical genome structure and high-level sequence similarity, SL-CoV does not bind to the same cellular receptor as for SARS-CoV and the N-terminus of the S proteins only share 64% amino acid identity, suggesting there are fundamental differences between these two groups of coronaviruses. To gain insight into the basis of this difference, we established a recombinant adenovirus system expressing the S protein from SL-CoV (rAd-Rp3-S) to investigate its immune characterization. Our results showed that immunized mice generated strong humoral immune responses against the SL-CoV S protein. Moreover, a strong cellular immune response demonstrated by elevated IFN-γ and IL-6 levels was also observed in these mice. However, the induced antibody from these mice had weaker cross-reaction with the SARS-CoV S protein, and did not neutralize HIV pseudotyped with SARS-CoV S protein. These results demonstrated that the immunogenicity of the SL-CoV S protein is distinct from that of SARS-CoV, which may cause the immunological differences between human SARS-CoV and bat SL-CoV. Furthermore, the recombinant virus could serve as a potential vaccine candidate against bat SL-CoV infection.

Article PDF

Download to read the full article text

Similar content being viewed by others

MVA vector expression of SARS-CoV-2 spike protein and protection of adult Syrian hamsters against SARS-CoV-2 challenge

Article Open access 03 December 2021

Clement A. Meseda, Charles B. Stauft, … Jerry P. Weir

Structural definition of a pan-sarbecovirus neutralizing epitope on the spike S2 subunit

Article Open access 11 April 2022

Nicholas K. Hurlburt, Leah J. Homad, … Andrew T. McGuire

In silico Design and Characterization of Multi-epitopes Vaccine for SARS-CoV2 from Its Spike Protein

Article 03 January 2022

Gunderao H. Kathwate

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. Bai B, Hu Q, Hu H, et al. 2008. Virus-like particles of SARS-like coronavirus formed by membrane proteins from different origins demonstrate stimulating activity in human dendritic cells. PLoS ONE, 3: e2685.

    Article  PubMed  Google Scholar 

  2. Baric R S, Fu K, Schaad, M C, et al. 1990. Establishing a genetic recombination map for murine coronavirus strain A59 complementation groups. Virology, 177: 646–656.

    Article  CAS  PubMed  Google Scholar 

  3. Berry J D, Jones S, Drebot M A, et al. 2004. Development and characterisation of neutralising monoclonal antibody to the SARS-coronavirus. J Virol Methods, 120: 87–96.

    Article  CAS  PubMed  Google Scholar 

  4. Bisht H, Roberts A, Vogel L, et al. 2005. Neutralizing antibody and protective immunity to SARS coronavirus infection of mice induced by a soluble recombinant polypeptide containing an N-terminal segment of the spike glycoprotein. Virology, 334: 160–165.

    Article  CAS  PubMed  Google Scholar 

  5. Chen Z, Zhang L, Qin C, et al. 2005. Recombinant modified vaccinia virus Ankara expressing the spike glycoprotein of severe acute respiratory syndrome coronavirus induces protective neutralizing antibodies primarily targeting the receptor binding region. J Virol, 79: 2678–2688.

    Article  CAS  PubMed  Google Scholar 

  6. Chou C F, Shen S, Tan Y J, et al. 2005. A novel cell-based binding assay system reconstituting interaction between SARS-CoV S protein and its cellular receptor. J Virol Methods, 123: 41–48.

    Article  CAS  PubMed  Google Scholar 

  7. Fouchier R A, Kuiken T, Schutten M, et al. 2003. Aetiology: Koch’s postulates fulfilled for SARS virus. Nature, 423:240.

    Article  CAS  PubMed  Google Scholar 

  8. Fu K, Baric R S. 1992. Evidence for variable rates of recombination in the MHV genome. Virology, 189: 88–102.

    Article  CAS  PubMed  Google Scholar 

  9. Guan Y, Zheng B J, He Y Q, et al. 2003. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science, 302:276–278.

    Article  CAS  PubMed  Google Scholar 

  10. He Y, Li J, Du L, et al. 2006. Identification and characterization of novel neutralizing epitopes in the receptor-binding domain of SARS-CoV spike protein: revealing the critical antigenic determinants in inactivated SARS-CoV vaccine. Vaccine, 24: 5498–5508.

    Article  CAS  PubMed  Google Scholar 

  11. He Y, Li J, Heck S, et al. 2006. Antigenic and immunogenic characterization of recombinant baculovirus-expressed severe acute respiratory syndrome coronavirus spike protein: implication for vaccine design. J Virol, 80: 5757–5767.

    Article  CAS  PubMed  Google Scholar 

  12. He Y, Li J, Jiang S. 2006. A single amino acid substitution (R441A) in the receptor-binding domain of SARS coronavirus spike protein disrupts the antigenic structure and binding activity. Biochem Biophys Res Commun, 344: 106–113.

    Article  CAS  PubMed  Google Scholar 

  13. He Y, Lu H, Siddiqui P, et al. 2005. Receptor-binding domain of severe acute respiratory syndrome coronavirus spike protein contains multiple conformation-dependent epitopes that induce highly potent neutralizing antibodies. J Immunol, 174: 4908–4915.

    CAS  PubMed  Google Scholar 

  14. He Y, Zhou Y, Liu S, et al. 2004. Receptor-binding domain of SARS-CoV spike protein induces highly potent neutralizing antibodies: implication for developing subunit vaccine. Biochem Biophys Res Commun, 324: 773–781.

    Article  CAS  PubMed  Google Scholar 

  15. He Y, Zhou Y, Wu H, et al. 2004. Identification of immunodominant sites on the spike protein of severe acute respiratory syndrome (SARS) coronavirus: implication for developing SARS diagnostics and vaccines. J Immunol, 173: 4050–4057.

    CAS  PubMed  Google Scholar 

  16. Ho T Y, Wu S L, Cheng S E, et al. 2004. Antigenicity and receptor-binding ability of recombinant SARS coronavirus spike protein. Biochem Biophys Res Commun, 313: 938–947.

    Article  CAS  PubMed  Google Scholar 

  17. Ksiazek T G, Erdman D, Goldsmith C S, et al. 2003. A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med, 348: 1953–1966.

    Article  CAS  PubMed  Google Scholar 

  18. Lau S K, Woo P C, Li K S, et al. 2005. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc Natl Acad Sci U S A, 102: 14040–14045.

    Article  CAS  PubMed  Google Scholar 

  19. Li W, Moore M J, Vasilieva N, et al. 2003. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature, 426: 450–454.

    Article  CAS  PubMed  Google Scholar 

  20. Li W, Shi Z, Yu M, et al. 2005. Bats are natural reservoirs of SARS-like coronaviruses. Science, 310: 676–679.

    Article  CAS  PubMed  Google Scholar 

  21. Liu R Y, Wu L Z, Huang B J, et al. 2005. Adenoviral expression of a truncated S1 subunit of SARS-CoV spike protein results in specific humoral immune responses against SARS-CoV in rats. Virus Res, 112: 24–31.

    Article  CAS  PubMed  Google Scholar 

  22. Marra M A, Jones S J, Astell C R, et al. 2003. The Genome sequence of the SARS-associated coronavirus. Science, 300: 1399–1404.

    Article  CAS  PubMed  Google Scholar 

  23. Peiris J S, Yuen K Y, Osterhaus A D, et al. 2003. The severe acute respiratory syndrome. N Engl J Med, 349: 2431–2441.

    Article  CAS  PubMed  Google Scholar 

  24. Pfeffer L M, Dinarello C A, Herberman R B, et al. 1998. Biological properties of recombinant alphainterferons: 40th anniversary of the discovery of interferons. Cancer Res, 58: 2489–2499.

    CAS  PubMed  Google Scholar 

  25. Poon L L, Chu D K, Chan K H, et al. 2005. Identification of a novel coronavirus in bats. J Virol, 79: 2001–2009.

    Article  CAS  PubMed  Google Scholar 

  26. Ren W, Qu X, Li W, et al. 2008. Difference in receptor usage between severe acute respiratory syndrome (SARS) coronavirus and SARS-like coronavirus of bat origin. J Virol, 82: 1899–1907.

    Article  CAS  PubMed  Google Scholar 

  27. Rota P A, Oberste M S, Monroe S S, et al. 2003. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science, 300: 1394–1399.

    Article  CAS  PubMed  Google Scholar 

  28. Simmons G, Reeves J D, Rennekamp A J, et al. 2004. Characterization of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) spike glycoproteinmediated viral entry. Proc Natl Acad Sci USA, 101: 4240–4245.

    Article  CAS  PubMed  Google Scholar 

  29. Stroher U, DiCaro A, Li Y, et al. 2004. Severe acute respiratory syndrome-related coronavirus is inhibited by interferon-alpha. J Infect Dis, 189: 1164–1167.

    Article  PubMed  Google Scholar 

  30. Tang X C, Zhang J X, Zhang S Y, et al. 2006. Prevalence and genetic diversity of coronaviruses in bats from China. J Virol, 80(15): 7481–7490.

    Article  CAS  PubMed  Google Scholar 

  31. Wang W, Ye L, Ye L, et al. 2007. Up-regulation of IL-6 and TNF-alpha induced by SARS-coronavirus spike protein in murine macrophages via NF-kappaB pathway. Virus Res, 128: 1–8.

    Article  CAS  PubMed  Google Scholar 

  32. Wang Y D, Sin W Y, Xu G B, et al. 2004. T-cell epitopes in severe acute respiratory syndrome (SARS) coronavirus spike protein elicit a specific T-cell immune response in patients who recover from SARS. J Virol, 78: 5612–5618.

    Article  CAS  PubMed  Google Scholar 

  33. Woo P C, Lau S K, Li K S, et al. 2006. Molecular diversity of coronaviruses in bats. Virology, 351: 180–187.

    Article  CAS  PubMed  Google Scholar 

  34. Yang Z Y, Kong W P, Huang Y, et al. 2004. A DNA vaccine induces SARS coronavirus neutralization and protective immunity in mice. Nature, 428: 561–564.

    Article  CAS  PubMed  Google Scholar 

  35. Yi C E, Ba L, Zhang L, et al. 2005. Single amino acid substitutions in the severe acute respiratory syndrome coronavirus spike glycoprotein determine viral entry and immunogenicity of a major neutralizing domain. J Virol, 79: 11638–11646.

    Article  CAS  PubMed  Google Scholar 

  36. Zhong N S, Zheng B J, Li Y M, et al. 2003. Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People’s Republic of China, in February, 2003. Lancet, 362: 1353–1358.

    Article  CAS  PubMed  Google Scholar 

  37. Zhou Z, Post P, Chubet R, et al. 2006. A recombinant baculovirus-expressed S glycoprotein vaccine elicits high titers of SARS-associated coronavirus (SARS-CoV) neutralizing antibodies in mice. Vaccine, 24: 3624–3631.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China

    Yu-xuan Hou, Cheng Peng, Zheng-gang Han, Peng Zhou & Zheng-li Shi

  2. Department of Biological Sciences, Mississippi State University, Mississippi State, MS, 39762, USA

    Ji-guo Chen

Authors
  1. Yu-xuan Hou
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Cheng Peng
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Zheng-gang Han
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Peng Zhou
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Ji-guo Chen
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. Zheng-li Shi
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Zheng-li Shi.

Additional information

Foundation items: This work was supported by the State Key Program for Basic Research Grant (2005CB523004) from the Chinese Ministry of Science and Technology, the Knowledge Innovation Program Key Project administered by the Chinese Academy of Sciences (KSCX1-YW-R-07).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hou, Yx., Peng, C., Han, Zg. et al. Immunogenicity of the spike glycoprotein of Bat SARS-like coronavirus. Virol. Sin. 25, 36–44 (2010). https://doi.org/10.1007/s12250-010-3096-2

Download citation

  • Received: 24 August 2009

  • Accepted: 28 October 2009

  • Published: 12 February 2010

  • Issue Date: February 2010

  • DOI: https://doi.org/10.1007/s12250-010-3096-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Key words

  • SARS coronavirus (SARS-CoV)
  • SARS-like coronavirus (SL-CoV)
  • Spike glycoprotein
  • Humoral immune response
  • Cellular immune response
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

167.114.118.212

Not affiliated

Springer Nature

© 2024 Springer Nature