Skip to main content

Specificity of developmental resistance in gypsy moth (Lymantria dispar) to two DNA-insect viruses

Abstract

Gypsy moth (Lymantria dispar) larvae displayed marked developmental resistance within an instar to L. dispar M nucleopolyhedrovirus (LdMNPV) regardless of the route of infection (oral or intrahemocoelic) in a previous study, indicating that in gypsy moth, this resistance has a systemic component. In this study, gypsy moth larvae challenged with the Amsacta moorei entomopoxvirus (AMEV) showed developmental resistance within the fourth instar to oral, but not intrahemocoelic, inoculation. In general, gypsy moth is considered refractory to oral challenge with AMEV, but in this study, 43% mortality occurred in newly molted fourth instars fed a dose of 5×106 large spheroids of AMEV; large spheroids were found to be more infectious than small spheroids when separated by a sucrose gradient. Developmental resistance within the fourth instar was reflected by a 2-fold reduction in mortality (18%–21%) with 5×106 large spheroids in larvae orally challenged at 24, 48 or 72 h post-molt. Fourth instars were highly sensitive to intrahemocoelic challenge with AMEV; 1PFU produced approximately 80% mortality regardless of age within the instar. These results indicate that in gypsy moth, systemic developmental resistance may be specific to LdMNPV, reflecting a co-evolutionary relationship between the baculovirus and its host.

This is a preview of subscription content, access via your institution.

References

  1. Bonning B C, Hoover K, Duffey S S, et al. 1995. Production of polyhedra of the Autographa californica nuclear polyhedrosis virus using the Sf21 and Tn5B1-4 cell lines and comparison with host-derived polyhedra by bioassay. J Invert Pathol, 66: 224–230.

    Article  CAS  Google Scholar 

  2. Burgerjon A, Biache G, Chaufaux J, et al. 1981. Sensibilité comparée, en fonction de leur âge, des chenilles de Lymantria dispar, Mamestra brassicae et Spodoptera littoralis aux virus de la polyhèdrose nucleaire. Entomophaga, 26:47–58.

    Article  Google Scholar 

  3. Duan L, Otvos I S. 2001. Influence of larval age and virus concentration on mortality and sublethal effects of a nucleopolyhedrovirus on the western spruce budworm (Lepidoptera: Tortricidae). Environ Entomol, 30(1): 136–146.

    Article  Google Scholar 

  4. Engelhard E K, Volkman L E. 1995. Developmental resistance within fourth instar Trichoplusia ni orally inoculated with Autographa californica M nuclear polyhedrosis virus. Virology, 209: 384–389.

    Article  CAS  PubMed  Google Scholar 

  5. Goodwin R H, Adams J R, Shapiro M. 1990. Replication of the entomopoxvirus from Amsacta moorei in serum-free cultures of a gypsy moth cell line. J Invert Pathol, 56: 190–205.

    Article  Google Scholar 

  6. Goodwin R H, Milner R J, Beaton C D. 1991. Entomopoxvirinae. In: Atlas of Invertebrate Viruses (Adams J R, Bonami J R, ed.), Boca Raton, FL: CRC Press. p260–285.

    Google Scholar 

  7. Goodwin R H, Tompkins G J, McCawley P. 1978. Gypsy moth cell lines divergent in viral susceptibility.1. Culture and identification. In Vitro, 14(6): 485–494.

    Article  CAS  PubMed  Google Scholar 

  8. Granados R R. 1981. Entomopoxvirus infections in insects. In: Pathogenesis of invertebrate microbial disease (Davidson W, ed.), Totowa, NJ: Allanheld Osmun.

    Google Scholar 

  9. Granados R R, Roberts D W. 1970. Electron microscopy of a poxlike virus infecting an invertebrate host. Virology, 40: 230–243.

    Article  CAS  PubMed  Google Scholar 

  10. Grove M J, Hoover K. 2007. Intrastadial developmental resistance of third instar gypsy moths (Lymantria dispar L.) to L. dispar nucleopolyhedrovirus. Biol Contr. 40: 355–361.

    Article  Google Scholar 

  11. Hoover K, Grove M, Su S. 2002. Systemic component to intrastadial developmental resistance to baculoviral disease in gypsy moth. Biol Contr, 25: 92–98.

    Article  Google Scholar 

  12. King L A, Wilkinson N, Miller D P, et al. 1998. Entomopoxviruses. In: The Insect Viruses (Miller LK, Ball A, ed.), New York, NY: Plenum Publishing. p1–29.

    Google Scholar 

  13. Kirkpatrick B A, Washburn J O, Volkman L E. 1998. AcMNPV pathogenesis and developmental resistance in fifth instar Heliothis virescens. J Invert Pathol, 72: 63–72.

    Article  CAS  Google Scholar 

  14. Lynn D E, Dougherty E M, McClintock J T, et al. 1988. Development of cell lines from various tissues of Lepidoptera. In: Invertebrate and Fish Tissue Culture (Mitsuhashi J, ed.), Tokyo: Japan Scientific Societies Press. p239–242.

    Google Scholar 

  15. McCarthy W J, Granados R R, Roberts D W. 1974. Isolation and characterization of entomopox virions from virus-containing inclusions of Amsacta moorei (Lepidoptera: Arctiidae). Virology, 59: 59–69.

    Article  CAS  PubMed  Google Scholar 

  16. Milks M L, Burnstyn I, Myers J H. 1998. Influence of larval age on the lethal and sublethal effects of the nucleopolyhedrovirus of Trichoplusia ni in the cabbage looper. Biol Con, 12(2):119–126.

    Article  Google Scholar 

  17. Roberts D W, Granados R R. 1968. A Poxlike Virus from Amsacta moorei (Lepidoptera: Arctiidae). J Invert Pathol, 12: 141–143.

    Article  Google Scholar 

  18. Shapiro M, Dougherty E M. 1994. Enhancement in activity of homologous and heterologous viruses against the gypsy moth (Lepidoptera: Lymantriidae) by an optical brightener. J Econ Entomol, 87: 361–365.

    Google Scholar 

  19. Shapiro M, Im D J, Adams J R, et al. 1994. Comparative effectiveness of Lymantria nuclear polyhedrosis and cytoplasmic polyhedrosis against the gypsy moth (Lepidoptera: Lymantriidae). J Econ Entomol, 87(1): 72–75.

    Google Scholar 

  20. Slavicek J M, Hayes-Plazolles N, Kelly M E. 1995. Rapid formation of few polyhedra mutants of Lymantria dispar multinucleocapsid nuclear polyhedrosis virus during serial passage in cell culture. Biol Contr, 5: 251–261.

    Article  Google Scholar 

  21. Teakle R E, Jensen J M, Giles J E. 1986. Age-related susceptibility of Heliothis punctiger to a commercial formulation of nuclear polyhedrosis virus. J Invert Pathol, 47: 82–92.

    Article  Google Scholar 

  22. Veber J. 1957. A cyoplasmic polyhedral disease of the gypsy moth (Lymantria dispar L.). Nature, 179: 1304–1305.

    Article  CAS  PubMed  Google Scholar 

  23. Washburn J O, Kirkpatrick B A, Haas-Stapleton E, et al. 1998. Evidence that the stilbene-derived optical brightener M2R enhances Autographa californica M nucleopolyhedrovirus infection of Trichoplusia ni and Heliothis virescens by preventing sloughing of infected midgut epithelial cells. Biol Contr. 11: 58–69.

    Article  Google Scholar 

  24. Washburn J O, Kirkpatrick B A, Volkman L E. 1995. Comparative pathogenesis of Autographa californica M nuclear polyhedrosis virus in larvae of Trichoplusia ni and Heliothis virescens. Virology, 209: 561–568.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelli Hoover.

Additional information

Foundation item: Partial funding for this project was provided by the National Science Foundation USA (Award No. IBN-0077710).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hoover, K., Grove, M.J. Specificity of developmental resistance in gypsy moth (Lymantria dispar) to two DNA-insect viruses. Virol. Sin. 24, 493–500 (2009). https://doi.org/10.1007/s12250-009-3053-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12250-009-3053-0

CLC number

  • R373

Key words

  • Resistance
  • Co-evolution
  • Baculovirus
  • Entomopoxvirus
  • Gypsy moth