Abstract
Grass carp reovirus (GCRV), a double stranded RNA virus that infects aquatic animals, often with disastrous effects, belongs to the genus Aquareovirus and family Reoviridea. Similar to other reoviruses, genome replication of GCRV in infected cells occurs in cytoplasmic inclusion bodies, also called viral factories. Sequences analysis revealed the nonstructural protein NS80, encoded by GCRV segment 4, has a high similarity with μNS in MRV(Mammalian orthoreoviruses), which may be associated with viral factory formation. To understand the function of the μNS80 protein in virus replication, the initial expression and identification of the immunogenicity of the GCRV NS80 protein inclusion forming-related region(335–742) was investigated in this study. It is shown that the over-expressed fusion protein was produced by inducing with IPTG at 28°C. In addition, serum specific rabbit antibody was obtained by using super purified recombinant NS80(335–742) protein as antigen. Moreover, the expressed protein was able to bind to anti-his-tag monoclonal antibody (mouse) and NS80(335–742) specific rabbit antibody. Further western blot analysis indicates that the antiserum could detect NS80 or NS80C protein expression in GCRV infected cells. This data provides a foundation for further investigation of the role of NS80 in viral inclusion formation and virion assembly.
This is a preview of subscription content, access via your institution.
Reference
Attoui H, Fang Q, Mohd J F, et al. 2002. Common evolutionary origin of aquareoviruses and orthoreoviruses revealed by genome characterization of Golden shiner reovirus, Grass carp reovirus, Striped bass reovirus and golden ide reovirus (genus Aquareovirus, family Reoviridae). J Gen Virol, 83: 1941–1951.
Arnold M M, Murray K E, Nibert M L. 2008. Formation of the factory matrix is an important, though not a sufficient function of nonstructural protein μNS during reovirus infection. Virology, 375: 412–423.
Becker M M, Peters T R, Dermody T S. 2003. Reovirus μNS and μNS proteins form cytoplasmic inclusion structures in the absence of viral infection. J Virol, 77: 5948–5963.
Broering T J, Arnold M M, Miller C L. 2005. Carboxyl-Proximal Regions of Reovirus Nonstructural Protein μNS Necessary and Sufficient for Forming Factory-Like Inclusions. J Virol, 79: 6194–6206.
Broering T J, Kim J, Miller C L, et al. 2004. Reovirus nonstructural protein μNS recruits viral core surface proteins and entering core particles to factory-like inclusions. J Virol, 78: 1882–1892.
Broering T J, McCutcheon A M, Centonze V E. 2000. Reovirus Nonstructural Protein μNS Binds to Core Particles but Does Not Inhibit Their Transcription and Capping Activities. J Virol, 74: 5516–5524.
Broering T J, Parker J S L, Joyce P L. 2002. Mammalian Reovirus Nonstructural Protein μNS Forms Large Inclusions and Colocalizes with Reovirus Microtubule-Associated Protein μ2 in Transfected Cells. J Virol, 76: 8285–8297.
Chandran K, Walker S B, Chen Y, et al. 1999. In vitro recoating of reovirus cores with baculovirus-expressed outer-capsid proteins μ1 and sigma3. J Virol, 73(5): 3941–3950.
Cheng L, Fang Q, Shah S, et al. 2008. Subnanometer-resolution Structures of the Grass Carp Reovirus Core and Virion. J Mol Biol, 382(1): 213–222.
Dryden K A, Wang G J, Yeager M, et al. 1993. Early steps in reovirus infection are associated with dramatic changes in supramolecular structure and protein conformations. J Cell Biol, 122(5): 1023–1041.
Fang Q, Attoui H, Biagini P, et al. 2000. Sequence of genome segments 1, 2, and 3 of the grass carp reovirus (Genus Aquareovirus, family Reoviridae). Bioch Bioph Res Commun, 274(3): 762–766.
Fang Q, Ke L H, Cai Y Q. 1989. Growth characterization and high titre culture of GCHV. Virologica Sinica, 3: 314–319. (in Chinese).
Fang Q, Shah S, Liang Y, et al. 2005. 3D Reconstruction and Capsid Protein Characterization of Grass Carp Reovirus. Science in China Series C, 48: 593–600.
Fang Q, Seng E K, Ding Q Q, et al. 2008. Characterization of infectious particles of grass carp reovirus by treatment with proteases. Arch Virol, 153: 675–682.
Ivanovic T, Agosto M A, Nibert M L. 2007. A role for molecular chaperone Hsc70 in reovirus outer capsid disassembly. J Biol Chem, 282(16): 12210–12219.
Ke L H, Fang Q, Cai Y Q. 1990. Characteristics of a novel isolate of grass carp Hemorrhage Virus. Acta Hydrobiol Sinica, 14: 153–159. (in Chinese)
Kim J, Zhang X, Centonze V E, et al. 2002. The hydrophilic amino-terminal arm of reovirus core-shell protein λ1 is dispensable for particle assembly. J Virol, 76: 12211–12222.
Kobayashi T, Chappell J D, Dermody T S. 2006. Genespecific inhibition of reovirus replication by-RNAinterference. J.Virol, 80: 9053–9063.
Mertens P P C, Arella M, Attoui H, et al. 2000. Family Reoviridae. In: Virus Taxonomy (van Regenmortel M H V, Fauguet C M, Bishop D H L, et al. ed.), San Diego: Academic Press, CA, USA. p 395–480.
Miller C L, Broering T J, Parker J S L, et al. 2003. Reovirus σNS protein localizes to inclusions through an association requiring the μNS amino-terminus. J Virol, 77: 4566–4576.
Rangel A A, Samal S K. 1999. Identification of grass carp hemorrhage virus as a new genogroup of aquareovirus. J Gen Virol, 80: 2399–2402.
Regenmortel M H V, Fauquet C M, Bishop D H L, et al. 2000. Virus Taxonomy — Seventh Report of the International Committee on Taxonomy of Viruses. San Diego: Academic Press, California, USA.
Reinisch K M, Nibert M L, Harrison S C. 2000. Structure of the reovirus core at 3.6 angstrom resolution. Nature, 404(6781): 960–967.
Touris-Otero F, Martinez-Costas J, Vakharia V N, et al. 2004. Avian reovirus nonstructural protein μNS forms viroplasm-like inclusions and recruits protein μNS to these structures. Virology, 319: 94–106.
Wiener J R, Bartlett J A, Joklik W K. 1989. The sequences of reovirus serotype 3 genome segments M1 and M3 encoding the minor protein μ2 and the major nonstructural protein μNS, respectively. Virology, 169: 293–304.
Zhang L, Chandran K, Nibert M L, et al. 2006. Reovirus μ1 structural rearrangements that mediate membrane penetration. J Virol, 80(24): 12367–12376.
Zhang L L, Shen J Y, Lei C F, et al., The High Level Expression of Grass carp reovirus VP7 Protein in Prokaryotic Cells, Virologica Sinica, 2008, 23(1):51–56.
Zou G P, Fang Q. 2000. Study On Replication and Morphogenesis of the Grass Carp Reovirus (GCRV) in CIK Cells. Virologica Sinica. 15: 188–192.
Author information
Authors and Affiliations
Corresponding author
Additional information
Foundation items: National Basic Research Program of China (973 Program, Grant No. 2009CB118701); National Natural Scientific Foundation of China (Grant Nos. 30671615, 30871940); Innovation project of the Chinese Academy of Sciences (Grant No.KSCX2-YW-N-021).
Rights and permissions
About this article
Cite this article
Fan, C., Zhang, Ll., Lei, Cf. et al. Expression and identification of inclusion forming-related domain of NS80 nonstructural protein of grass carp reovirus. Virol. Sin. 24, 194–201 (2009). https://doi.org/10.1007/s12250-009-3028-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12250-009-3028-1
CLC number
- R373
Key words
- Grass carp reovirus (GCRV)
- Nonstructural protein NS80
- Inclusion forming-related domain
- Recombinant expression