Skip to main content

Advertisement

SpringerLink
  • Log in
  1. Home
  2. Virologica Sinica
  3. Article
The mechanism of henipavirus fusion: Examining the relationships between the attachment and fusion glycoproteins
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Die komplexe Fusionsmaschinerie der Herpesviren

28 March 2022

Melina Vallbracht, Barbara G. Klupp & Thomas C. Mettenleiter

Membrane attachment and fusion of HIV-1, influenza A, and SARS-CoV-2: resolving the mechanisms with biophysical methods

11 October 2022

Geetanjali Negi, Anurag Sharma, … Nagma Parveen

Glycoprotein attachment with host cell surface receptor ephrin B2 and B3 in mediating entry of nipah and hendra virus: a computational investigation

23 November 2022

Lipsa Priyadarsinee, Himakshi Sarma & G Narahari Sastry

Crystal structure of Usutu virus envelope protein in the pre-fusion state

26 November 2018

Zimin Chen, Fei Ye, … Guangwen Lu

Rescue and characterization of recombinant cedar virus, a non-pathogenic Henipavirus species

27 March 2018

Eric D. Laing, Moushimi Amaya, … Christopher C. Broder

Six-helix bundle completion in the distal C-terminal heptad repeat region of gp41 is required for efficient human immunodeficiency virus type 1 infection

02 April 2018

Dehua Liu, Hongyun Wang, … Zene Matsuda

Roles of the highly conserved amino acids in the second receptor binding site of the Newcastle disease virus HN protein

27 December 2019

Yaqing Liu, Miaomiao Chi, … Zhiyu Wang

The key amino acids of E protein involved in early flavivirus infection: viral entry

03 July 2021

Tao Hu, Zhen Wu, … Anchun Cheng

Vesicular stomatitis virus G protein transmembrane region is crucial for the hemi-fusion to full fusion transition

13 July 2018

Yali Ci, Yang Yang, … Lei Shi

Download PDF
  • Published: 14 April 2009

The mechanism of henipavirus fusion: Examining the relationships between the attachment and fusion glycoproteins

  • Andrew C. Hickey1 &
  • Christopher C. Broder1 

Virologica Sinica volume 24, pages 110–120 (2009)Cite this article

  • 120 Accesses

  • 3 Citations

  • Metrics details

Abstract

The henipaviruses, represented by Nipah virus and Hendra virus, are emerging zoonotic viral pathogens responsible for repeated outbreaks associated with high morbidity and mortality in Australia, Southeast Asia, India and Bangladesh. These viruses enter host cells via a class I viral fusion mechanism mediated by their attachment and fusion envelope glycoproteins; efficient membrane fusion requires both these glycoproteins in conjunction with specific virus receptors present on susceptible host cells. The henipavirus attachment glycoprotein interacts with a cellular B class ephrin protein receptor triggering conformational alterations leading to the activation of the viral fusion (F) glycoprotein. The analysis of monoclonal antibody (mAb) reactivity with G has revealed measurable alterations in the antigenic structure of the glycoprotein following its binding interaction with receptor. These observations only appear to occur with full-length native G glycoprotein, which is a tetrameric oligomer, and not with soluble forms of G (sG), which are disulfide-linked dimers. Single amino acid mutations in a heptad repeat-like structure within the stalk domain of G can disrupt its association with F and subsequent membrane fusion promotion activity. Notably, these mutants of G also appear to confer a post-receptor bound conformation implicating the stalk domain as an important element in the G glycoprotein’s structure and functional relationship with F. Together, these observations suggest fusion is dependent on a specific interaction between the F and G glycoproteins of the henipaviruses. Further, receptor binding induces measurable changes in the G glycoprotein that appear to be greatest in respect to the interactions between the pairs of dimers comprising its native tetrameric structure. These receptor-induced conformational changes may be associated with the G glycoprotein’s promotion of the fusion activity of F.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. Anonymous. 2008. Hendra Virus, Human, Equine — Australia (Queensland). International Society for Infectious Diseases. Report No.: 20080821.2606.

  2. Anonymous. 2007. Hendra Virus, Human, Equine Australia, (Queensland): correction. International Society for Infectious Diseases. Report No.: 20070903.2896.

  3. Anonymous. 2008. Nipah Virus, Fatal — Bangladesh (Dhaka). International Society for Infectious Diseases. Report No.: 20080311.0979.

  4. Bishop K A, Broder C C. 2008. Hendra and Nipah: Lethal Zoonotic Paramyxoviruses. In: Emerging Infections (Scheld W M, Hammer S M, Hughes J M, ed.). Washington, D.C.: American Society for Microbiology.

    Google Scholar 

  5. Bishop K A, Hickey A C, Khetawat D,et al. 2008. Residues in the stalk domain of the hendra virus g glycoprotein modulate conformational changes associated with receptor binding. J Virol, 82(22): 11398–11409.

    Article  CAS  PubMed  Google Scholar 

  6. Bishop K A, Stantchev T S, Hickey A C,et al. 2007. Identification of hendra virus g glycoprotein residues that are critical for receptor binding. J Virol. 81(11): 5893–5901.

    Article  CAS  PubMed  Google Scholar 

  7. Bonaparte M I, Dimitrov A S, Bossart K N,et al. 2005. Ephrin-B2 ligand is a functional receptor for Hendra virus and Nipah virus. Proc Natl Acad Sci USA, 102(30): 10652–10657.

    Article  CAS  PubMed  Google Scholar 

  8. Bossart K N, Broder C C. 2009. Paramyxovirus Entry. In: Viral Entry into Host Cells (Pöhlmann S, Simmons G, ed.). Austin: TX Landes Bioscience.

    Google Scholar 

  9. Bossart K N, Crameri G, Dimitrov A S,et al. 2005. Receptor binding, fusion inhibition, and induction of cross-reactive neutralizing antibodies by a soluble g glycoprotein of hendra virus. J Virol, 79(11): 6690–6702.

    Article  CAS  PubMed  Google Scholar 

  10. Bossart K N, McEachern J A, Hickey A C,et al. 2007. Neutralization assays for differential henipavirus serology using Bio-Plex Protein Array Systems. J Virol Methods, 142(1–2): 29–40.

    Article  CAS  PubMed  Google Scholar 

  11. Bossart K N, Wang L F, Eaton B T,et al. 2001. Functional expression and membrane fusion tropism of the envelope glycoproteins of Hendra virus. Virology, 290(1): 121–135.

    Article  CAS  PubMed  Google Scholar 

  12. Bossart K N, Wang L F, Flora M N,et al. 2002. Membrane fusion tropism and heterotypic functional activities of the nipah virus and hendra virus envelope glycoproteins. J Virol, 76(22): 11186–11198.

    Article  CAS  PubMed  Google Scholar 

  13. Bowden T A, Aricescu A R, Gilbert R J,et al. 2008. Structural basis of Nipah and Hendra virus attachment to their cell-surface receptor ephrin-B2. Nat Struct Mol Biol, 15(6): 567–572.

    Article  CAS  PubMed  Google Scholar 

  14. Chua K B. 2003. Nipah virus outbreak in Malaysia. J Clin Virol, 26(3): 265–275.

    Article  PubMed  Google Scholar 

  15. Chua K B, Goh K J, Wong K T,et al. 1999. Fatal encephalitis due to Nipah virus among pig-farmers in Malaysia [see comments]. Lancet, 354(9186): 1257–1259.

    Article  CAS  PubMed  Google Scholar 

  16. Corey E A, Iorio R M. 2007. Mutations in the stalk of the measles virus hemagglutinin protein decrease fusion but do not interfere with virus-specific interaction with the homologous fusion protein. J Virol, 81(18): 9900–9910.

    Article  CAS  PubMed  Google Scholar 

  17. Deng R, Wang Z, Mirza A M,et al. 1995. Localization of a domain on the paramyxovirus attachment protein required for the promotion of cellular fusion by its homologous fusion protein spike. Virology, 209(2): 457–469.

    Article  CAS  PubMed  Google Scholar 

  18. Drescher U. 2002. Eph family functions from an evolutionary perspective. Curr Opin Genet Dev, 12(4): 397–402.

    Article  CAS  PubMed  Google Scholar 

  19. Eaton B T, Broder C C, Middleton D,et al. 2006. Hendra and Nipah viruses: different and dangerous. Nat Rev Microbiol, 4(1): 23–35.

    Article  CAS  PubMed  Google Scholar 

  20. Eaton B T, Broder C C, Wang L F. 2005. Hendra and Nipah viruses: pathogenesis and therapeutics. Curr Mol Med, 5(8): 805–816.

    Article  CAS  PubMed  Google Scholar 

  21. Eaton B T, Mackenzie J S, Wang L-F. 2007. Henipaviruses. In: Fields Virology (Knipe D M, Howley P M, ed.). 5 ed. Philadelphia: Lippincott Williams & Wilkins. p. 1587–1600.

    Google Scholar 

  22. Epstein J H, Prakash V, Smith C S,et al. 2008. Henipavirus infection in fruit bats (Pteropus giganteus), India. Emerg Infect Dis, 14(8): 1309–1311.

    Article  PubMed  Google Scholar 

  23. Guillaume V, Aslan H, Ainouze M,et al. 2006. Evidence of a potential receptor-binding site on the Nipah virus G protein (NiV-G): identification of globular head residues with a role in fusion promotion and their localization on an NiV-G structural model. J Virol, 80(15): 7546–7554.

    Article  CAS  PubMed  Google Scholar 

  24. Gurley E S, Montgomery J M, Hossain M J,et al. 2007. Person-to-person transmission of Nipah virus in a Bangladeshi community. Emerg Infect Dis, 13(7): 1031–1037.

    PubMed  Google Scholar 

  25. Harcourt B H, Lowe L, Tamin A,et al. 2005. Genetic characterization of Nipah virus, Bangladesh, 2004. Emerg Infect Dis, 11(10): 1594–1597.

    CAS  PubMed  Google Scholar 

  26. Harit A K, Ichhpujani R L, Gupta S,et al. 2006. Nipah/Hendra virus outbreak in Siliguri, West Bengal, India in 2001. Indian J Med Res. 123(4): 553–560.

    CAS  PubMed  Google Scholar 

  27. Hayman D T, Suu-Ire R, Breed A C,et al. 2008. Evidence of henipavirus infection in West African fruit bats. PLoS ONE, 3(7): e2739.

    Article  PubMed  Google Scholar 

  28. Heroult M, Schaffner F, Augustin H G. 2006. Eph receptor and ephrin ligand-mediated interactions during angiogenesis and tumor progression. Exp Cell Res, 312(5): 642–650.

    Article  CAS  PubMed  Google Scholar 

  29. Iorio R M, Mahon P J. 2008. Paramyxoviruses: different receptors — different mechanisms of fusion. Trends Microbiol, 16(4): 135–137.

    Article  CAS  PubMed  Google Scholar 

  30. Krishanan S, Biswas K. 2007. Nipah Outbreak in India and Bangladesh. Newsletter: World Health Organization-South East Asia regional office.

    Google Scholar 

  31. Lamb R A, Jardetzky T S. 2007. Structural basis of viral invasion: lessons from paramyxovirus F. Curr Opin Struct Biol. 17(4): 427–436.

    Article  CAS  PubMed  Google Scholar 

  32. Lamb R A, Parks G D. 2007. Paramyxoviridae: The Viruses and Their Replication. In: Fields Virology (Knipe D M, Howley P M, ed.). 5 ed. Philadelphia: Lippincott Williams & Wilkins. p 1449–1496.

    Google Scholar 

  33. Lamb R A, Paterson R G, Jardetzky T S. 2006. Paramyxovirus membrane fusion: Lessons from the F and HN atomic structures. Virology, 344(1): 30–37.

    Article  CAS  PubMed  Google Scholar 

  34. Lawrence M C, Borg N A, Streltsov V A,et al. 2004. Structure of the haemagglutinin-neuraminidase from human parainfluenza virus type III. J Mol Biol, 335(5): 1343–1357.

    Article  CAS  PubMed  Google Scholar 

  35. Li Y, Wang J, Hickey A C,et al. 2008. Antibodies to Nipah or Nipah-like viruses in bats, China. Emerg Infect Dis. 14(12): 1974–1976.

    Article  PubMed  Google Scholar 

  36. Luby S P, Rahman M, Hossain M J,et al. 2006. Foodborne transmission of Nipah virus, Bangladesh. Emerg Infect Dis, 12(12): 1888–1894.

    PubMed  Google Scholar 

  37. Melanson V R, Iorio R M. 2006. Addition of N-glycans in the stalk of the Newcastle disease virus HN protein blocks its interaction with the F protein and prevents fusion. J Virol, 80(2): 623–633.

    Article  CAS  PubMed  Google Scholar 

  38. Melanson V R, Iorio R M. 2004. Amino acid substitutions in the F-specific domain in the stalk of the newcastle disease virus HN protein modulate fusion and interfere with its interaction with the F protein. J Virol, 78(23): 13053–13061.

    Article  CAS  PubMed  Google Scholar 

  39. Morrison T G. 2001. The three faces of paramyxovirus attachment proteins. Trends Microbiol, 9(3): 103–105.

    Article  CAS  PubMed  Google Scholar 

  40. Murray G. 2006. Miscellaneous: Hendra Virus Findings in Queensland, Australia. Paris, France: World Organisation for Animal Health (OIE), www.oie.int. Report No.: Vol. 19 - No. 26.

    Google Scholar 

  41. Negrete O A, Levroney E L, Aguilar H C,et al. 2005. EphrinB2 is the entry receptor for Nipah virus, an emergent emergent deadly paramyxovirus. Nature, 436(7049): 401–405.

    CAS  PubMed  Google Scholar 

  42. Pager C T, Craft W W, Jr Patch J,et al. 2006. A mature and fusogenic form of the Nipah virus fusion protein requires proteolytic processing by cathepsin L. Virology, 346(2): 251–257.

    Article  CAS  PubMed  Google Scholar 

  43. Pager C T, Dutch R E. 2005. Cathepsin L is involved in proteolytic processing of the hendra virus fusion protein. J Virol, 79(20): 12714–12720.

    Article  CAS  PubMed  Google Scholar 

  44. Pasquale E B. 2004. Eph-ephrin promiscuity is now crystal clear. Nat Neurosci, 7(5): 417–418.

    Article  CAS  PubMed  Google Scholar 

  45. Plemper R K, Hammond A L, Gerlier D,et al. 2002. Strength of envelope protein interaction modulates cytopathicity of measles virus. J Virol, 76(10): 5051–5061.

    Article  CAS  PubMed  Google Scholar 

  46. Poliakov A, Cotrina M, Wilkinson D G. 2004. Diverse roles of eph receptors and ephrins in the regulation of cell migration and tissue assembly. Dev Cell, 7(4): 465–480.

    Article  CAS  PubMed  Google Scholar 

  47. Reynes J M, Counor D, Ong S,et al. 2005. Nipah virus in Lyle’s flying foxes, Cambodia. Emerg Infect Dis, 11(7): 1042–1047.

    PubMed  Google Scholar 

  48. Russell C J, Jardetzky T S, Lamb R A. 2001. Membrane fusion machines of paramyxoviruses: capture of intermediates of fusion. Embo J, 20(15): 4024–4034.

    Article  CAS  PubMed  Google Scholar 

  49. Stone-Hulslander J, Morrison T G. 1997. Detection of an interaction between the HN and F proteins in Newcastle disease virus-infected cells. J Virol, 71(9): 6287–6295.

    CAS  PubMed  Google Scholar 

  50. Stone-Hulslander J, Morrison T G. 1999. Mutational analysis of heptad repeats in the membrane-proximal region of Newcastle disease virus HN protein. J Virol, 73(5): 3630–3637.

    CAS  PubMed  Google Scholar 

  51. Takimoto T, Taylor G L, Connaris H C,et al. 2002. Role of the hemagglutinin-neuraminidase protein in the mechanism of paramyxovirus-cell membrane fusion. J Virol, 76(24): 13028–13033.

    Article  CAS  PubMed  Google Scholar 

  52. Tanabayashi K, Compans R W. 1996. Functional interaction of paramyxovirus glycoproteins: identification of a domain in Sendai virus HN which promotes cell fusion. J Virol, 70(9): 6112–6118.

    CAS  PubMed  Google Scholar 

  53. Tsurudome M, Kawano M, Yuasa T,et al. 1995. Identification of regions on the hemagglutinin-neuraminidase protein of human parainfluenza virus type 2 important for promoting cell fusion. Virology, 213(1): 190–203.

    Article  CAS  PubMed  Google Scholar 

  54. Wang B, Zhang N, Qian K X,et al. 2005. Conserved molecular players for axon guidance and angiogenesis. Curr Protein Pept Sci, 6(5): 473–478.

    Article  CAS  PubMed  Google Scholar 

  55. Wong K T, Shieh W J, Kumar S,et al. 2002. Nipah virus infection: pathology and pathogenesis of an emerging paramyxoviral zoonosis. Am J Pathol, 161(6): 2153–2167.

    PubMed  Google Scholar 

  56. Xu K, Rajashankar K R, Chan Y P,et al. 2008. Host cell recognition by the henipaviruses: crystal structures of the Nipah G attachment glycoprotein and its complex with ephrin-B3. Proc Natl Acad Sci USA, 105(29): 9953–9958.

    Article  CAS  PubMed  Google Scholar 

  57. Yu M, Hansson E, Langedijk J P,et al. 1998. The attachment protein of Hendra virus has high structural similarity but limited primary sequence homology compared with viruses in the genus Paramyxovirus. Virology, 251(2): 227–233.

    Article  CAS  PubMed  Google Scholar 

  58. Yuan P, Thompson T B, Wurzburg B A,et al. 2005. Structural studies of the parainfluenza virus 5 hemagglutinin-neuraminidase tetramer in complex with its receptor, sialyllactose. Structure (Camb), 13(5): 803–815.

    Article  CAS  Google Scholar 

  59. Zhang J, Hughes S. 2006. Role of the ephrin and Eph receptor tyrosine kinase families in angiogenesis and development of the cardiovascular system. J Pathol, 208(4): 453–461.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, 20814, USA

    Andrew C. Hickey & Christopher C. Broder

Authors
  1. Andrew C. Hickey
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Christopher C. Broder
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Christopher C. Broder.

Additional information

Foundation item: This work was supported in part by NIH grant AI054715 to C.C.B.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hickey, A.C., Broder, C.C. The mechanism of henipavirus fusion: Examining the relationships between the attachment and fusion glycoproteins. Virol. Sin. 24, 110–120 (2009). https://doi.org/10.1007/s12250-009-3027-2

Download citation

  • Received: 09 January 2009

  • Accepted: 16 January 2009

  • Published: 14 April 2009

  • Issue Date: April 2009

  • DOI: https://doi.org/10.1007/s12250-009-3027-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

CLC number

  • Q939.4

Key words

  • Hendra virus
  • Nipah virus
  • Henipavirus
  • Paramyxovirus
  • Viral entry
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not logged in - 34.239.152.207

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.