Skip to main content

Advertisement

SpringerLink
  • Log in
  1. Home
  2. Virologica Sinica
  3. Article
The role of the charged residues of the GP2 helical regions in Ebola entry
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

A reverse genetics system for enterovirus D68 using human RNA polymerase I

17 May 2018

Minglei Pan, Shuai Gao, … Tao Wang

Defective HIV-1 envelope gene promotes the evolution of the infectious strain through recombination in vitro

04 August 2020

Huamian Wei, Danwei Yu, … Yuxian He

Expression of chimeric proteins based on a backbone of the GII.4 norovirus VP1 and their application in the study of a GII.6 norovirus-specific blockade epitope

03 February 2022

Yuqi Huo, Jie Ma, … Qingxia Zhao

A nuanced role of the small loop of hepatitis B virus small envelope protein in virion morphogenesis and secretion

01 December 2021

Chih-Hsu Chang, Shu-Fan Chou & Chiaho Shih

Comparative genomic analyses of a virulent pseudorabies virus and a series of its in vitro passaged strains

29 December 2018

Chao Ye, Jiqiang Wu, … Guangzhi Tong

Analysis of herpes simplex type 1 gB, gD, and gH/gL on production of infectious HIV-1: HSV-1 gD restricts HIV-1 by exclusion of HIV-1 Env from maturing viral particles

02 April 2019

Sachith Polpitiya Arachchige, Wyatt Henke, … Edward B. Stephens

Six-helix bundle completion in the distal C-terminal heptad repeat region of gp41 is required for efficient human immunodeficiency virus type 1 infection

02 April 2018

Dehua Liu, Hongyun Wang, … Zene Matsuda

Construction and Characterization of HIV-1 env-Pseudoviruses of the Recombinant Form CRF63_02A and Subtype A6

01 April 2022

N. B. Rudometova, N. S. Shcherbakova, … L. I. Karpenko

Development and optimization of a DNA-based reverse genetics systems for epizootic hemorrhagic disease virus

06 March 2020

Yunze Guo, Jakobus M. Pretorius, … Encheng Sun

Download PDF
  • Published: 14 April 2009

The role of the charged residues of the GP2 helical regions in Ebola entry

  • Haiqing Jiang1,
  • Jizhen Wang1,
  • Balaji Manicassamy1,
  • Santhakumar Manicassamy1,
  • Michael Caffrey2 &
  • …
  • Lijun Rong1 

Virologica Sinica volume 24, pages 121–135 (2009)Cite this article

  • 188 Accesses

  • 3 Citations

  • Metrics details

Abstract

The glycoprotein (GP) of Ebola is the sole structural protein that forms the spikes on the viral envelope. The GP contains two subunits, GP1 and GP2, linked by a disulfide bond, which are responsible for receptor binding and membrane fusion, respectively. In this study, the full length of GP gene of Ebola Zaire species, 2028 base pairs in length, was synthesized using 38 overlapping oligonucleotides by multiple rounds of polymerase chain reaction (PCR). The synthesized GP gene was shown to be efficiently expressed in mammalian cells. Furthermore, an efficient HIV-based pseudotyping system was developed using the synthetic GP gene, providing a safe approach to dissecting the entry mechanism of Ebola viruses. Using this pseudotyping system and mutational analysis, the role of the charged residues in the GP2 helical regions was examined. It was found that substitutions of the most charged residues in the regions did not adversely affect GP expression, processing, or viral incorporation, however, most of the mutations greatly impaired the ability of GP to mediate efficient viral infection. These results demonstrate that these charged residues of GP2 play an important role in GP-mediated Ebola entry into its host cells. We propose that these charged residues are involved in forming the intermediate conformation(s) of GP in membrane fusion and Ebola entry.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. Bachelder R E, Bilancieri J, Lin W,et al. 1995. A human recombinant Fab identifies a human immunodeficiency virus type 1-induced conformational change in cell surface-expressed CD4. J Virol, 69:5734–5742.

    CAS  PubMed  Google Scholar 

  2. Baker K A, Dutch R E, Lamb R A,et al. 1999. Structural basis for paramyxovirus-mediated membrane fusion. Mol Cell, 3:309–319.

    Article  CAS  PubMed  Google Scholar 

  3. Bisht H, Roberts A, Vogel L,et al. 2004. Severe acute respiratory syndrome coronavirus spike protein expressed by attenuated vaccinia virus protectively immunizes mice. Proc Natl Acad Sci USA, 101:6641–6646.

    Article  CAS  PubMed  Google Scholar 

  4. Brindley M A, Hughes L, Ruiz A,et al. 2007. Ebola virus glycoprotein 1: identification of residues important for binding and postbinding events. J Virol, 81:7702–7709.

    Article  CAS  PubMed  Google Scholar 

  5. Bullough P A, Hughson F M, Skehel J J,et al. 1994. Structure of influenza haemagglutinin at the pH of membrane fusion. Nature, 371:37–43.

    Article  CAS  PubMed  Google Scholar 

  6. Caffrey M. 2001. Model for the structure of the HIV gp41 ectodomain: insight into the intermolecular interactions of the gp41 loop. Biochim Biophys Acta, 1536:116–122.

    CAS  PubMed  Google Scholar 

  7. Carr C M, Kim P S. 1993. A spring-loaded mechanism for the conformational change of influenza hemagglutinin. Cell, 73:823–832.

    Article  CAS  PubMed  Google Scholar 

  8. Colman P M, Lawrence M C. 2003. The structural biology of type I viral membrane fusion. Nat Rev Mol Cell Biol, 4:309–319.

    Article  CAS  PubMed  Google Scholar 

  9. Connor R I, Chen B K, Choe S,et al. 1995. Vpr is required for efficient replication of human immunodeficiency virus type-1 in mononuclear phagocytes. Virology, 206:935–944.

    Article  CAS  PubMed  Google Scholar 

  10. Fass D, Blacklow S C, Kim P S. 1996. Retrovirus envelope domain at 1.7A0 resolution. Nature Struct Biol, 3:465–469.

    Article  CAS  PubMed  Google Scholar 

  11. Gallaher W R. 1996. Similar structural models of the transmembrane proteins of Ebola and avian sarcoma viruses. Cell, 85:477–478.

    Article  CAS  PubMed  Google Scholar 

  12. Higginbottom A, Quinn E R, Kuo C C,et al. 2000. Identification of amino acid residues in CD81 critical for interaction with hepatitis C virus envelope glycoprotein E2 [In Process Citation]. J Virol, 74:3642–3649.

    Article  CAS  PubMed  Google Scholar 

  13. Jeffers S A, Sanders D A, Sanchez A. 2002. Covalent modifications of the ebola virus glycoprotein. J Virol, 76:12463–12472.

    Article  CAS  PubMed  Google Scholar 

  14. Kao C C, Yang X, Kline A,et al. 2000. Template Requirements for RNA Synthesis by a Recombinant Hepatitis C Virus RNA-Dependent RNA Polymerase. J Virol, 74:11121–11128.

    Article  CAS  PubMed  Google Scholar 

  15. Kuhn J H, Radoshitzky S R, Guth A C,et al. 2006. Conserved receptor-binding domains of Lake Victoria marburgvirus and Zaire ebolavirus bind a common receptor. J Biol Chem, 281:15951–15958.

    Article  CAS  PubMed  Google Scholar 

  16. Lee J E, Fusco M L, Hessell A J,et al. 2008. Structure of the Ebola virus glycoprotein bound to an antibody from a human survivor. Nature, 454:177–182.

    Article  CAS  PubMed  Google Scholar 

  17. Ma M, Kersten D B, Kamrud K I,et al. 1999. Murine leukemia virus pseudotypes of La Crosse and Hantaan Bunyaviruses: a system for analysis of cell tropism. Virus Res, 64:23–32.

    Article  CAS  PubMed  Google Scholar 

  18. Malashkevich V N, Chan D C, Chutkowski C T,et al. 1998. Crystal structure of the simian immunodeficiency virus (SIV) gp41 core: conserved helical interactions underlie the broad inhibitory activity of gp41 peptides. Proc Natl Acad Sci U S A, 95:9134–9139.

    Article  CAS  PubMed  Google Scholar 

  19. Malashkevich V N, Schneider B J, McNally M L,et al. 1999. Core structure of the envelope glycoprotein GP2 from Ebola virus at 1.9-A resolution. Proc Natl Acad Sci USA, 96:2662–2667.

    Article  CAS  PubMed  Google Scholar 

  20. Manicassamy B, Wang J, Jiang H,et al. 2005. Comprehensive Analysis of Ebola Virus GP1 in Viral Entry. J Virol, 79:4793–4805.

    Article  CAS  PubMed  Google Scholar 

  21. Manicassamy B, Wang J, Rumschlag E,et al. 2007. Characterization of Marburg virus glycoprotein in viral entry. Virology, 358:79–88.

    Article  CAS  PubMed  Google Scholar 

  22. Medina M F, Kobinger G P, Rux J,et al. 2003. Lentiviral vectors pseudotyped with minimal filovirus envelopes increased gene transfer in murine lung. Mol Ther, 8:777–789.

    Article  PubMed  Google Scholar 

  23. Mpanju O M, Towner J S, Dover J E,et al. 2006. Identification of two amino acid residues on Ebola virus glycoprotein 1 critical for cell entry. Virus Res, 121:205–214.

    Article  CAS  PubMed  Google Scholar 

  24. Neumann G, Feldmann H, Watanabe S,et al. 2002. Reverse genetics demonstrates that proteolytic processing of the Ebola virus glycoprotein is not essential for replication in cell culture. J Virol, 76:406–410.

    Article  CAS  PubMed  Google Scholar 

  25. Prehaud C, Hellebrand E, Coudrier D,et al. 1998. Recombinant Ebola virus nucleoprotein and glycoprotein (Gabon 94 strain) provide new tools for the detection of human infections. J Gen Virol, 79(Pt 11):2565–2572.

    CAS  PubMed  Google Scholar 

  26. Rong L, Bates P. 1995. Analysis of the subgroup A avian sarcoma and leukosis virus receptor: the 40-residue, cysteine-rich, low-density lipoprotein receptor repeat motif of Tva is sufficient to mediate viral entry. J Virol, 69:4847–4853.

    CAS  PubMed  Google Scholar 

  27. Rong L, Gendron K, Strohl B,et al. 1998. Characterization of determinants for envelope binding and infection in Tva, the subgroup A avian sarcoma and leukosis virus receptor. J Virol, 72:4552–4559.

    CAS  PubMed  Google Scholar 

  28. Russell C J, Kantor K L, Jardetzky T S,et al. 2003. A dual-functional paramyxovirus F protein regulatory switch segment: activation and membrane fusion. J Cell Biol, 163:363–374.

    Article  CAS  PubMed  Google Scholar 

  29. Sanchez A, Khan A S, Zaki S R,et al. 2001. Filoviridae: Marburg and Ebola Viruses. In: Fields Virology (Knipe D M, Howley P M. ed.), 4th ed, vol. 1. Lippicott Williams & Wilkins, Philadelphia, PA. p1279–1304.

    Google Scholar 

  30. Sanchez A, Kiley M P, Holloway B P,et al. 1993. Sequence analysis of the Ebola virus genome: organization, genetic elements, and comparison with the genome of Marburg virus. Virus Res, 29:215–240.

    Article  CAS  PubMed  Google Scholar 

  31. Sanchez A, Trappier S G, Mahy B W,et al. 1996. The virion glycoproteins of Ebola viruses are encoded in two reading frames and are expressed through transcriptional editing. Proc Natl Acad Sci USA, 93:3602–3607.

    Article  CAS  PubMed  Google Scholar 

  32. Sanchez A, Trappier S G, Stroher U,et al. 1998. Variation in the glycoprotein and VP35 genes of Marburg virus strains. Virology, 240:138–146.

    Article  CAS  PubMed  Google Scholar 

  33. Simmons G, Wool-Lewis R J, Baribaud F,et al. 2002. Ebola virus glycoproteins induce global surface protein down-modulation and loss of cell adherence. J Virol, 76:2518–2528.

    Article  CAS  PubMed  Google Scholar 

  34. Takada A, Feldmann H, Stroeher U,et al. 2003. Identification of protective epitopes on ebola virus glycoprotein at the single amino acid level by using recombinant vesicular stomatitis viruses. J Virol, 77:1069–1074.

    Article  CAS  PubMed  Google Scholar 

  35. Takada A, Robison C, Goto H,et al. 1997. A system for functional analysis of Ebola virus glycoprotein. Proc Natl Acad Sci USA, 94:14764–14769.

    Article  CAS  PubMed  Google Scholar 

  36. Volchkov V E, Becker S, Volchkova V A,et al. 1995. GP mRNA of Ebola virus is edited by the Ebola virus polymerase and by T7 and vaccinia virus polymerases. Virology, 214:421–430.

    Article  CAS  PubMed  Google Scholar 

  37. Volchkov V E, Blinov V M, Netesov S V. 1992. The envelope glycoprotein of Ebola virus contains an immunosuppressive-like domain similar to oncogenic retroviruses. FEBS Lett, 305:181–184.

    Article  CAS  PubMed  Google Scholar 

  38. Weissenhorn W, Dessen A, Harrison S C,et al. 1997. Atomic structure of the ectodomain from HIV-1 gp41. Nature, 387:426–430.

    Article  CAS  PubMed  Google Scholar 

  39. Weissenhorn W, Calder L J, Wharton S A,et al. 1998. The central structural feature of the membrane fusion protein subunit from the Ebola virus glycoprotein is a long triple-stranded coiled coil. Proc Natl Acad Sci USA, 95:6032–6036.

    Article  CAS  PubMed  Google Scholar 

  40. Wilson I A, Skehel J J, Wiley D C. 1981. Structure of the hemagglutinin membrane glycoprotein of influenza virus at 3A resolution. Nature, 289:366–373.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, USA

    Haiqing Jiang, Jizhen Wang, Balaji Manicassamy, Santhakumar Manicassamy & Lijun Rong

  2. Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago College of Medicine, Chicago, IL, 60612, USA

    Michael Caffrey

Authors
  1. Haiqing Jiang
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Jizhen Wang
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Balaji Manicassamy
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Santhakumar Manicassamy
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Michael Caffrey
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. Lijun Rong
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Lijun Rong.

Additional information

Foundation items: The laboratory research was supported by National Institutes of Health grants CA 092459 and AI48056. L. R. was a recipient of the Schweppe Foundation Career Development Award.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jiang, H., Wang, J., Manicassamy, B. et al. The role of the charged residues of the GP2 helical regions in Ebola entry. Virol. Sin. 24, 121–135 (2009). https://doi.org/10.1007/s12250-009-3015-6

Download citation

  • Received: 05 December 2008

  • Accepted: 12 December 2008

  • Published: 14 April 2009

  • Issue Date: April 2009

  • DOI: https://doi.org/10.1007/s12250-009-3015-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

CLC number

  • Q939.4

Key words

  • Ebola virus
  • Glycoprotein GP1/GP2
  • Charged residues
  • Viral entry
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not logged in - 44.201.94.236

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.