Virologica Sinica

, Volume 23, Issue 6, pp 383–393 | Cite as

The importance of heparan sulfate in herpesvirus infection

Article

Abstract

Herpes simplex virus type-1 (HSV-1) is one of many pathogens that use the cell surface glycosaminoglycan heparan sulfate as a receptor. Heparan sulfate is highly expressed on the surface and extracellular matrix of virtually all cell types making it an ideal receptor. Heparan sulfate interacts with HSV-1 envelope glycoproteins gB and gC during the initial attachment step during HSV-1 entry. In addition, a modified form of heparan sulfate, known as 3-O-sulfated heparan sulfate, interacts with HSV-1 gD to induce fusion between the viral envelope and host cell membrane. The 3-O-sulfation of heparan sulfate is a rare modification which occurs during the biosynthesis of heparan sulfate that is carried out by a family of enzymes known as 3-O-sulfotransferases. Due to its involvement in multiple steps of the infection process, heparan sulfate has been a prime target for the development of agents to inhibit HSV entry. Understanding how heparan sulfate functions during HSV-1 infection may not only be critical for inhibiting infection by this virus, but it may also be crucial in the fight against many other pathogens as well.

Key words

Heparan sulfate (HS) Herpesviruses Herpes simplex virus type-1 (HSV-1) 3-O-sulfotransferases Viral entry 

CLC number

Q786 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akula S M, Wang F Z, Vierira J,et al. 2001. Human herpesvirus 8 (HHV8/KSHV) infection of target cells involves interaction with heparan sulfate. Virology, 282(2): 245–255.PubMedCrossRefGoogle Scholar
  2. 2.
    Andersen J H, Jenssen H, Gutteberg T J. 2003. Lactoferrin and lactoferricin inhibit herpes simplex 1 and 2 infection and exhibit synergy when combined with acyclovir. Antiviral Res, 58(3): 209–215.PubMedCrossRefGoogle Scholar
  3. 3.
    Andersen, J H, Jenssen H, Sandvik K,et al. 2004. Anti-HSV activity of lactoferrin and lactoferricin is dependent on the presence of heparan sulphate at the cell surface. J Med Virol, 74(2): 262–271.PubMedCrossRefGoogle Scholar
  4. 4.
    Bacon T H, Levin M J, Leary J L,et al. 2003. Herpes simplex virus resistance to acyclovir and penciclovir after two decades of antiviral therapy. Clin Microbiol Rev, 16(1): 114–128.PubMedCrossRefGoogle Scholar
  5. 5.
    Barth H, Schafer C, Adah M I,et al. 2003. Cellular binding of hepatitis C virus envelope glycoprotein E2 requires cell surface heparan sulfate. J Biol Chem, 278(42): 41003–41012.PubMedCrossRefGoogle Scholar
  6. 6.
    Brady R C, Bernstein D I. 2004. Treatment of herpes simplex virus infections. Antiviral Res, 61(2): 73–81.PubMedCrossRefGoogle Scholar
  7. 7.
    Campadelli-Fiume G, Cocchi F, Menotti L,et al. 2000. The novel receptors that mediate the entry of herpes simplex viruses and animal alphaherpesviruses into cells. Rev Med Virol, 10(5): 305–319.PubMedCrossRefGoogle Scholar
  8. 8.
    Carfi A, Willis S H, Whitbeck J C,et al. 2001. Herpes simplex virus glycoprotein D bound to the human receptor HveA. Mol Cell, 8(1): 169–179.PubMedCrossRefGoogle Scholar
  9. 9.
    Chen J, Avci F Y, Munoz E M,et al. 2005. Enzymatically redesigning of biologically active heparan sulfate. J Biol Chem, 280(52): 42817–42825.PubMedCrossRefGoogle Scholar
  10. 10.
    Chen Y, Maguire T, Hileman R E,et al. 1997. Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate. Nat Med 3(8): 866–871PubMedCrossRefGoogle Scholar
  11. 11.
    Clement C, Tiwari V, Scanlan P M,et al. 2006. A novel role for phagocytosis-like uptake in herpes simplex virus entry. J Cell Biol, 174(7): 1009–1021.PubMedCrossRefGoogle Scholar
  12. 12.
    Compton T, Nowlin D M, Cooper N R. 1993. Initiation of human cytomegalovirus infection requires initial interaction with cell surface heparan sulfate. Virology, 193(2): 834–841.PubMedCrossRefGoogle Scholar
  13. 13.
    Copeland R, Balasubramaniam A, Tiwari V,et al. 2008. Using a 3-O-sulfated heparin octasaccharide to inhibit the entry of herpes simplex virus type 1. Biochemistry, 47(21): 5774–5783.PubMedCrossRefGoogle Scholar
  14. 14.
    Corey L, Spear P G. 1986. Infections with herpes simplex viruses. N Engl J Med, 314(11): 686–691.PubMedCrossRefGoogle Scholar
  15. 15.
    Dyer A P, Banfield B W, Martindale D,et al. 1997. Dextran sulfate can act as an artificial receptor to mediate a typespecific herpes simplex virus infection via glyco-protein B. J Virol, 71(1): 191–198.PubMedGoogle Scholar
  16. 16.
    Eizuru Y. 2003. Development of new antivirals for herpes-viruses. Antivir Chem Chemother, 14(6): 299–308.PubMedGoogle Scholar
  17. 17.
    Esko J D, Lindahl U. 2001. Molecular diversity of heparan sulfate. J Clin Invest, 108(2): 169–173.PubMedGoogle Scholar
  18. 18.
    Feyzi E, Trybala E, Bergstrom T,et al. 1997. Structural requirement of heparan sulphate for interaction with herpes simplex virus type 1 virions and isolated glycoprotein C. J Biol Chem, 272(40): 24850–24857.PubMedCrossRefGoogle Scholar
  19. 19.
    Friedman H M, Cohen G H, Eisenberg R J,et al. 1984. Glycoprotein C of herpes simplex virus type 1 acts as a receptor for C3b component of complement on infected cells. Nature, 309(5969): 633–635.PubMedCrossRefGoogle Scholar
  20. 20.
    Geraghty R J, Krummenacher C, Cohen G H,et al. 1998. Entry of alphaherpesviruses mediated by poliovirus receptor-related protein 1 and poliovirus receptor. Science, 280(5369): 1618–1620.PubMedCrossRefGoogle Scholar
  21. 21.
    Hasegawa K, Motsuchi W, Tanaka S,et al. 1994. Inhibition with lactoferrin of in vitro infection with human herpes virus. Jpn J Med Sci Biol, 47(2): 73–85.PubMedGoogle Scholar
  22. 22.
    Hayashi T, Hayashi K, Maeda M,et al. 1996. Calcium spirulan, an inhibitor of enveloped virus replication, from a blue-green alga Spirulina platensis. J Nat Prod, 59(1): 83–87.PubMedCrossRefGoogle Scholar
  23. 23.
    Herold B C, Gerber S I, Polonsky T,et al. 1995. Identification of structural features of heparin required for inhibition of herpes simplex virus type 1 binding. Virology, 206(2): 1108–1116.PubMedCrossRefGoogle Scholar
  24. 24.
    Herold B C, Siston A, Bremer J,et al. 1997. Sulfated carbohydrate compounds prevent microbial adherence by sexually transmitted disease pathogens. Antimicrob. Agents Chemother, 41(12): 2776–2780.PubMedGoogle Scholar
  25. 25.
    Herold B C, Visalli R J, Susmarski N,et al. 1994. Glycoprotein C-independent binding of herpes simplex virus to cells requires cell surface heparan sulphate and glycoprotein B. J Gen Virol, 75(Pt 6): 1211–1222.PubMedCrossRefGoogle Scholar
  26. 26.
    Herold B C, WuDunn D, Soltys N,et al. 1991. Glycoprotein C of herpes simplex virus type 1 plays a principal role in the adsorption of virus to cells and in infectivity. J Virol, 65(3): 1090–1098.PubMedGoogle Scholar
  27. 27.
    Hutton R D, Ewert D L, French G R. 1973. Differentiation of types 1 and 2 of herpes simplex virus by plaque inhibition with sulfated polyanions. Proc Soc Exp Biol Med, 142(1): 27–29.PubMedGoogle Scholar
  28. 28.
    Gerber S I, Belval B J, Herold B C. 1995. Differences in the role of glycoprotein C of HSV-1 and HSV-2 in viral binding may contribute to serotype differences in cell tropism. Virology, 214(1): 29–39.PubMedCrossRefGoogle Scholar
  29. 29.
    Giroglou T, Florin L, Schafer F,et al. 2001. Human papillomavirus infection requires cell surface heparan sulfate. J Virol, 75(3): 1565–1570.PubMedCrossRefGoogle Scholar
  30. 30.
    Gruenheid S, Gatzke L, Meadows H,et al. 1993. Herpes simplex virus infection and propagation in a mouse L cell mutant lacking heparan sulfate proteoglycans. J Virol, 67(1): 93–100.PubMedGoogle Scholar
  31. 31.
    Jacquet A, Haumont M, Chellun D,et al. 1998. The varicella zoster virus glycoprotein B (gB) plays a role in virus binding to cell surface heparan sulfate proteoglycans. Virus Res, 53(2): 197–207.PubMedCrossRefGoogle Scholar
  32. 32.
    Jenssen H. 2005. Anti herpes simplex virus activity of lactoferrin/lactoferricin-an example of antiviral activity of antimicrobial protein/peptide. Cell Mol Life Sci, 62(24): 3002–3013.PubMedCrossRefGoogle Scholar
  33. 33.
    Jenssen H, Andersen J H, Mantzilas D,et al. 2004. A wide range of medium-sized, highly cationic, alpha-helical peptides show antiviral activity against herpes simplex virus. Antiviral Res, 64(2): 119–126.PubMedGoogle Scholar
  34. 34.
    Jenssen H, Andersen J H, Uhlin-Hansen L,et al. 2004. Anti-HSV activity of lactoferricin analogues is only partly related to their affinity for heparan sulfate. Antiviral Res, 61(2): 101–109.PubMedCrossRefGoogle Scholar
  35. 35.
    Jenssen H, Hamill P, Hancock R E. 2006. Peptide antimicrobial agents. Clin Microbiol Rev, 19(3): 491–511.PubMedCrossRefGoogle Scholar
  36. 36.
    Jenssen H, Sandvik K, Andersen J H,et al. 2008. Inhibition of HSV cell-to-cell spread by lactoferrin and lactoferricin. Antiviral Res, 79(3): 192–198.PubMedCrossRefGoogle Scholar
  37. 37.
    Inatani M, Irie F, Plump A S,et al. 2003. Mammalian brain morphogenesis and midline axon guidance require heparan sulfate. Science, 302(5647): 1044–1046.PubMedCrossRefGoogle Scholar
  38. 38.
    Kwon H, Bai Q, Baek H J,et al. 2006. Soluble V domain of Nectin-1/HveC enables entry of herpes simplex virus type 1 (HSV-1) into HSV-resistant cells by binding to viral glycoprotein D. J Virol, 80(1): 138–148.PubMedCrossRefGoogle Scholar
  39. 39.
    Langeland N, Holmsen H, Lillehaug J R,et al. 1987. Evidence that neomycin inhibits binding of herpes simplex virus type 1 to the cellular receptor. J Virol, 61(11): 3388–3393.PubMedGoogle Scholar
  40. 40.
    Langeland N, Moore L J, Holmsen H,et al. 1998. Interaction of polylysine with the cellular receptor for herpes simplex virus type 1. J Gen Virol, 69(Pt 6): 1137–1145.Google Scholar
  41. 41.
    Laquerre S, Argnani R, Anderson D B,et al. 1998. Heparan sulfate proteoglycan binding by herpes simplex virus type 1 glycoproteins B and C, which differ in their contributions to virus attachment, penetration, and cell-to-cell spread. J Virol, 72(7): 6119–6130.PubMedGoogle Scholar
  42. 42.
    Lee J B, Hayashi K, Hashimoto M,et al. 2004. Novel antiviral fucoidan from sporophyll of Undaria pinnatifida (Mekabu). Chem Pharm Bull (Tokyo), 52(9): 1091–1094.CrossRefGoogle Scholar
  43. 43.
    Legrand D, Pierce A, Elass E,et al. 2008. Lactoferrin structure and functions. Adv Exp Med Biol, 606: 163–194.PubMedCrossRefGoogle Scholar
  44. 44.
    Liang X, Babiuk L A, Zamb T J. 1993. Mapping of heparin-binding structures on bovine herpesvirus 1 and pseudorabies virus gIII glycoproteins. Virology, 194(1): 233–243.PubMedCrossRefGoogle Scholar
  45. 45.
    Lindahl U, Kusche-Gullberg M, Kjellén L. 1998. Regulated diversity of heparan sulfate. J Biol Chem, 273(39): 24979–24982.PubMedCrossRefGoogle Scholar
  46. 46.
    Liu J, Shriver Z, Pope R M,et al. 2002. Characterization of a heparan sulphate octasaccharide that binds to herpes simplex viral type 1 glycoprotein D. J Biol Chem, 277(36): 33456–33467.PubMedCrossRefGoogle Scholar
  47. 47.
    Liu J, Shworak N W, Sinay P,et al. 1999. Expression of heparan sulphate D glucosaminyl 3-O sulphotransferase isoforms reveals novel substrate specificities. J Biol Chem, 274(8): 5185–5192.PubMedCrossRefGoogle Scholar
  48. 48.
    Lycke E, Johansson M, Svennerholm B,et al. 1991. Binding of herpes simplex virus to cellular heparan sulphate, an initial step in the adsorption process. J Gen Virol, 72(Pt 5): 1131–1137.PubMedCrossRefGoogle Scholar
  49. 49.
    Marchetti M, Longhi C, Conte M P,et al. 1996. Lactoferrin inhibits herpes simplex virus type1 adsorption to Vero cells. Antiviral Res, 29(2–3): 221–231.PubMedCrossRefGoogle Scholar
  50. 50.
    Marchetti M, Pisani S, Antonini G,et al. 1998. Metal complexes of bovine lactoferrin inhibit in vitro replication of herpes simplex virus type 1 and 2. Biometals, 11(2): 89–94.PubMedCrossRefGoogle Scholar
  51. 51.
    Mardberg K, Trybala E, Glorioso J C,et al. 2001. Mutational analysis of the major heparan sulfate-binding domain of herpes simplex virus type 1 glycoprotein C. J Gen Virol, 82(Pt 8): 1941–1950.PubMedGoogle Scholar
  52. 52.
    McKeehan W L, Wu X, Kan M. 1999. Requirement for anticoagulant heparan sulfate in the fibroblast growth factor receptor complex. J Biol Chem, 274(31): 21511–21514.PubMedCrossRefGoogle Scholar
  53. 53.
    Montgomery R I, Warner M S, Lum B J,et al. 1996. Herpes simplex virus-1 entry into cells mediated by a novel member of the TNF/NGF receptor family. Cell, 87(3): 427–436.PubMedCrossRefGoogle Scholar
  54. 54.
    Nahmias A J, Kibrick S. 1964. Inhibitory effect of heparin on herpes simplex virus. J Bacteriol, 87(5): 1060–1066.PubMedGoogle Scholar
  55. 55.
    Neyts J, Snoeck R, Schols D,et al. 1992. Sulfated polymers inhibit the interaction of human cytomegalovirus with cell surface heparan sulfate. Virology, 189(1): 48–58.PubMedCrossRefGoogle Scholar
  56. 56.
    Nicola A V, McEvoy A M, Straus S E. 2003. Roles for endocytosis and low pH in herpes simplex virus entry into HeLa and Chinese hamster ovary cells. J Virol, 77(9): 5324–5332.PubMedCrossRefGoogle Scholar
  57. 57.
    Nyberg K, Ekblad M, Bergstrom T,et al. 2004. The low molecular weight heparan sulfate-mimetic, PI-88, inhibits cell-to-cell spread of herpes simplex virus. Antiviral Res, 63(1): 15–24.PubMedCrossRefGoogle Scholar
  58. 58.
    O’Donnell C D, Tiwari V, Oh M J,et al. 2006. A role for heparan sulfate 3-O sulfotransferase isoform 2 in herpes simplex virus type 1 entry and spread. Virology, 346(2): 452–459.PubMedCrossRefGoogle Scholar
  59. 59.
    Pertel P E, Fridberg A, Parish M L,et al. 2001. Cell fusion induced by herpes simplex virus glycoproteins gB, gD, and gH-gL requires a gD receptor but not necessarily heparan sulfate. Virology, 279(1): 313–324.PubMedCrossRefGoogle Scholar
  60. 60.
    Ponce N M, Pujol C A, Damonte E B,et al. 2003. Fucoidans from the brown seaweed Adenocystis utricularis: extraction methods, antiviral activity and structural studies. Carbohydr Res, 338(2): 153–165.PubMedCrossRefGoogle Scholar
  61. 61.
    Preeprame S, Hayashi K, Lee J,et al. 2001. A novel antivirally active fucan sulfate derived from an edible brown alga, Sargassum horneri. Chem Pharm Bull (Tokyo), 49(4): 484–485.CrossRefGoogle Scholar
  62. 62.
    Raghuraman A, Tiwari V, Zhao Q,et al. 2007. Viral inhibition studies on sulfated lignin, a chemically modified biopolymer and a potential mimic of heparan sulfate. Biomacromolecules, 8(5): 1759–1763.PubMedCrossRefGoogle Scholar
  63. 63.
    Rosenberg R D, Shworak N W, Liu J,et al. 1997. Heparan sulfate proteoglycans of the cardiovascular system. Specific structures emerge but how is synthesis regulated? J Clin Invest, 99(9): 2062–2070.PubMedCrossRefGoogle Scholar
  64. 64.
    Scanlan P M, Tiwari V, Bommireddy S,et al. 2005. Spinoculation of heparan sulfate deficient cells enhances HSV-1 entry, but does not abolish the need for essential glycoproteins in viral fusion. J Virol Methods, 128(1–2): 104–112.PubMedCrossRefGoogle Scholar
  65. 65.
    Shieh M T, WuDunn D, Montgomery R I,et al. 1992. Cell surface receptors for herpes simplex virus are heparan sulphate proteoglycans. J Cell Biol, 116(5): 1273–1281.PubMedCrossRefGoogle Scholar
  66. 66.
    Shukla D, Liu J, Blaiklock P,et al. 1999. A novel role for 3-O-sulfated heparan sulfate in herpes simplex virus 1 entry. Cell, 99(1): 13–22.PubMedCrossRefGoogle Scholar
  67. 67.
    Shukla D, Spear P G. 2001. Herpesviruses and heparan sulfate: an intimate relationship in aid of viral entry. J Clin Invest, 108(4): 503–510.PubMedGoogle Scholar
  68. 68.
    Shworak N W, Liu J, Petros L M,et al. 1999. Multiple isoforms of heparan sulfate D glucosaminyl 3-O-sulfotrans-ferase. Isolation, characterization, and expression of human cDNAs and identification of distinct genomic loci. J Biol Chem, 274(8): 5170–5184.PubMedCrossRefGoogle Scholar
  69. 69.
    Shworak N W, HajMohammadi S, de Agostini A I,et al. 2002. Mice deficient in heparan sulfate 3-O-sulfotrans-ferase-1: normal hemostasis with unexpected perinatal phenotypes. Glycoconj J, 19(4–5): 355–361.PubMedCrossRefGoogle Scholar
  70. 70.
    Skrincosky D, Hocknell P, Whetter L,et al. 2000. Identification and analysis of a novel heparin-binding glycoprotein encoded by human herpesvirus 7. J Virol, 74(10): 4530–4540.PubMedCrossRefGoogle Scholar
  71. 71.
    Spear P G, Longnecker R. 2003. Herpesvirus entry: an update. J Virol, 77(19): 10179–10185.PubMedCrossRefGoogle Scholar
  72. 72.
    Spear P G, Shieh M T, Herold B C,et al. 1992. Heparan sulfate glycosaminoglycans as primary cell surface receptors for herpes simplex virus. Adv Exp Med Biol, 313: 341–353.PubMedGoogle Scholar
  73. 73.
    Svennerholm B, Jeansson S, Vahlne A,et al. 1991. Involvement of glycoprotein C (gC) in adsorption of herpes simplex virus type 1 (HSV-1) to the cell. Arch Virol, 120(3–4): 273–279.PubMedCrossRefGoogle Scholar
  74. 74.
    Tal-Singer R, Peng C, Ponce De Leon M,et al. 1995. Interaction of herpes simplex virus glycoprotein gC with mammalian cell surface molecules. J Virol, 69(7): 4471–4483.PubMedGoogle Scholar
  75. 75.
    Tiwari V, Clement C, Duncan M B,et al. 2004. A role for 3-O-sulphated heparan sulphate in cell fusion induced by herpes simplex virus type 1. J Gen Virol, 85(Pt 4): 805–809.PubMedCrossRefGoogle Scholar
  76. 76.
    Tiwari V, O’Donnell C D, Oh M J,et al. 2005. A role for 3-O-sulfotransferase isoform-4 in assisting HSV-1 entry and spread. Biochem Biophys Res Commun, 338(2): 930–937.PubMedCrossRefGoogle Scholar
  77. 77.
    Tiwari V, O’Donnell, C, Copeland R J,et al. 2007. Soluble 3-O-sulfated heparan sulfate can trigger herpes simplex virus type 1 entry into resistant Chinese hamster ovary (CHO-K1) cells. J Gen Virol, 88:1075–1079.PubMedCrossRefGoogle Scholar
  78. 78.
    Tiwari V, ten Dam G B, Yue B Y,et al. 2007. Role of 3-O-sulfated heparan sulfate in virus-induced polykary-ocyte formation. FEBS Lett, 581(23): 4468–4472.PubMedCrossRefGoogle Scholar
  79. 79.
    Trybala E, Bergstrom T, Svennerholm B,et al. 1994. Localization of a functional site on herpes simplex virus type 1 glycoprotein C involved in binding to cell surface heparan sulphate. J Gen Virol, 75( Pt 4): 743–752.PubMedCrossRefGoogle Scholar
  80. 80.
    Trybala E, Bergstrom T, Spillmann D,et al. 1998. Interaction between pseudorabies virus and heparin/heparan sulfate. Pseudorabies virus mutants differ in their interaction with heparin/heparan sulfate when altered for specific glycoprotein C heparin-binding domain. J Biol Chem, 273(9): 5047–5052.PubMedCrossRefGoogle Scholar
  81. 81.
    Trybala E, Liljeqvist J A, Svennerholm B,et al. 2000. Herpes simplex virus types 1 and 2 differ in their interaction with heparan sulfate. J Virol, 74(19): 9106–9114.PubMedCrossRefGoogle Scholar
  82. 82.
    Trybala E, Olofsson S, Mardberg K,et al. 2004. Structural and functional features of the polycationic peptide required for inhibition of herpes simplex virus invasion of cells. Antiviral Res, 62(3): 125–134.PubMedCrossRefGoogle Scholar
  83. 83.
    Tyagi M, Rusnati M, Presta M,et al. 2001. Internali-zation of HIV-1 Tat requires cell surface heparan sulfate proteoglycans. J Biol Chem, 276(5): 3254–3261.PubMedCrossRefGoogle Scholar
  84. 84.
    Vanderplasschen A, Bublot, M, Dubuisson J,et al. 1993. Attachment of the gammaherpesvirus bovine herpesvirus 4 is mediated by the interaction of gp8 glycoprotein with heparinlike moieties on the cell surface. Virology, 196(1): 232–240.PubMedCrossRefGoogle Scholar
  85. 85.
    Wang F Z, Akula S M, Pramod N P,et al. 2001. Human herpesvirus 8 envelope glycoprotein K8.1 A interaction with the target cells involves heparan sulfate. J Virol, 75(16): 7517–7527.PubMedCrossRefGoogle Scholar
  86. 86.
    WuDunn D, Spear P G. 1989. Initial interaction of herpes simplex virus with cells is binding to heparan sulphate. J Virol, 63(1): 52–58.PubMedGoogle Scholar
  87. 87.
    Xia G, Chen J, Tiwari V,et al. 2002. Heparan sulfate 3-O-sulfotransferase isoform 5 generates both an anti-thrombin-binding site and an entry receptor for herpes simplex virus, type 1. J Biol Chem, 277(40): 37912–37919.PubMedCrossRefGoogle Scholar
  88. 88.
    Xu D, Moon A, Song D,et al. 2008. Engineering sulfotransferases to modify heparan sulfate. Nat Chem Biol, 4(3): 200–202.PubMedCrossRefGoogle Scholar
  89. 89.
    Xu D, Tiwari V, Xia G,et al. 2005. Characterization of heparan sulphate 3-O sulphotransferase isoform 6 and its role in assisting the entry of herpes simplex virus type 1. Biochem J, 385(Pt 2): 451–459.PubMedGoogle Scholar
  90. 90.
    Yabe T, Shukla D, Spear P G,et al. 2001. Portable sulphotransferase domain determines sequence specificity of heparan sulphate 3-O-sulphotransferases. Biochem J, 359(Pt 1): 235–241.PubMedCrossRefGoogle Scholar
  91. 91.
    Yamaguchi Y. 2001. Heparan sulfate proteoglycans in the nervous system: their diverse roles in neurogenesis, axon guidance, and synaptogenesis. Semin Cell Dev Biol, 12: 99–106.PubMedCrossRefGoogle Scholar
  92. 92.
    Yoon M, Zago A, Shukla D,et al. 2003. Mutations in the N-termini of herpes simplex virus type 1 and 2 gDs alter functional interactions with the entry/fusion receptors HVEM, Nectin-2, and 3-O-sulphated heparan sulphate but not with Nectin-1. J Virol, 77(17): 9221–9231.PubMedCrossRefGoogle Scholar

Copyright information

© Wuhan Institute of Virology, CAS and Springer-Verlag GmbH 2008

Authors and Affiliations

  1. 1.Department of Microbiology and Immunology, College of MedicineUniversity of Illinois at ChicagoChicagoUSA
  2. 2.Department of Ophthalmology and Visual Sciences, College of MedicineUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations