Advertisement

Virologica Sinica

, Volume 23, Issue 4, pp 233–246 | Cite as

Comparison of the immunogenicities of HIV-1 mutants based on structural modification of env

  • Jian-hui Nie
  • Chun-tao Zhang
  • Hui-hui Chong
  • Xue-ling Wu
  • Chun-yu Liu
  • Yu Wu
  • Chen-yan Zhao
  • Lin-qi Zhang
  • You-chun WangEmail author
Article
  • 47 Downloads

Abstract

Eleven env mutants were designed and generated by site-directed mutagenesis of the regions around NAb epitopes and deletions of variable regions in env. The immunogenicities of the generated mutants were evaluated using single-cycle infection neutralization assays with two pseudoviruses and IFN-γ ELISPOT. Overall, five mutants (dWt, M2, M5-2, M5-1 and dM7) induced higher neutralization activities for both pseudoviruses than plasmid Wt, while only two of the mutants (dWt and M5-2) showed significant differences (P<0.05). Two mutants (M2 and dM2) induced more Env-specific T cells than plasmid Wt. Statistically however, significance was only reached for mutant M2. Thus, properly modified HIV-1 Env may have the potential to induce potent cellular and humoral immune responses.

Key words

HIV-1 Env Modification Neutralization assay ELISPOT 

CLC number

R512.91 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amara R R, Smith J M, Staprans S I, et al. 2002. Critical role for Env as well as Gag-Pol in control of a simian-human immunodeficiency virus 89.6P challenge by a DNA prime/recombinant modified vaccinia virus Ankara vaccine. J Virol, 76(12): 6138–6146.PubMedCrossRefGoogle Scholar
  2. 2.
    Binley J M, Wrin T, Korber B, et al. 2004. Comprehensive cross-clade neutralization analysis of a panel of anti-human immunodeficiency virus type 1 monoclonal antibodies. J Virol, 78(23): 13232–13252.PubMedCrossRefGoogle Scholar
  3. 3.
    Bolmstedt A, Hinkula J, Rowcliffe E, et al. 2001. Enhanced immunogenicity of a human immunodeficiency virus type 1 env DNA vaccine by manipulating N-glycosylation signals. Effects of elimination of the V3 N306 glycan. Vaccine, 20(3–4): 397–405.PubMedCrossRefGoogle Scholar
  4. 4.
    Burton D R, Desrosiers R C, Doms R W, et al. 2004. HIV vaccine design and the neutralizing antibody problem. Nat Immunol, 5(3): 233–236.PubMedCrossRefGoogle Scholar
  5. 5.
    Cao J, Sullivan N, Desjardin E, et al. 1997. Replication and neutralization of human immunodeficiency virus type 1 lacking the V1 and V2 variable loops of the gp120 envelope glycoprotein. J Virol, 71(12): 9808–9812.PubMedGoogle Scholar
  6. 6.
    Dhillon A K, Donners H, Pantophlet R, et al. 2007. Dissecting the neutralizing antibody specificities of broadly neutralizing sera from human immunodeficiency virus type 1-infected donors. J Virol, 81(12): 6548–6562.PubMedCrossRefGoogle Scholar
  7. 7.
    Dimitrov D S. 2000. Cell biology of virus entry. Cell, 101(7): 697–702.PubMedCrossRefGoogle Scholar
  8. 8.
    Doms R W. 2000. Beyond receptor expression: the influence of receptor conformation, density, and affinity in HIV-1 infection. Virology, 276(2): 229–237.PubMedCrossRefGoogle Scholar
  9. 9.
    Dunfee R L, Thomas E R, Wang J, et al. 2007. Loss of the N-linked glycosylation site at position 386 in the HIV envelope V4 region enhances macrophage tropism and is associated with dementia. Virology, 367(1): 222–234.PubMedCrossRefGoogle Scholar
  10. 10.
    Edwards T G, Hoffman T L, Baribaud F, et al. 2001. Relationships between CD4 independence, neutralization sensitivity, and exposure of a CD4-induced epitope in a human immunodeficiency virus type 1 envelope protein. J Virol, 75(11): 5230–5239.PubMedCrossRefGoogle Scholar
  11. 11.
    Evans D T, O’Connor D H, Jing P, et al. 1999. Virus-specific cytotoxic T-lymphocyte responses select for amino-acid variation in simian immunodeficiency virus Env and Nef. Nat Med, 5(11): 1270–1276.PubMedCrossRefGoogle Scholar
  12. 12.
    Fenyo E M, Putkonen P. 1996. Broad cross-neutralizing activity in serum is associated with slow progression and low risk of transmission in primate lentivirus infections. Immunol Lett, 51(1–2): 95–99.PubMedCrossRefGoogle Scholar
  13. 13.
    Grundner C, Mirzabekov T, Sodroski J, et al. 2002. Solid-phase proteoliposomes containing human immunodeficiency virus envelope glycoproteins. J Virol, 76(7): 3511–3521.PubMedCrossRefGoogle Scholar
  14. 14.
    Gzyl J, Bolesta E, Wierzbicki A, et al. 2004. Effect of partial and complete variable loop deletions of the human immunodeficiency virus type 1 envelope glycoprotein on the breadth of gp160-specific immune responses. Virology, 318(2): 493–506.PubMedCrossRefGoogle Scholar
  15. 15.
    Hemsley A, Arnheim N, Toney M D, et al. 1989. A simple method for site-directed mutagenesis using the polymerase chain reaction. Nucleic Acids Res, 17(16): 6545–6551.PubMedCrossRefGoogle Scholar
  16. 16.
    Hogg R S, Yip B, Kully C, et al. 1999. Improved survival among HIV-infected patients after initiation of triple-drug antiretroviral regimens. CMA, 160(5): 659–665.Google Scholar
  17. 17.
    Jeffs S A, Gorny M K, Williams C, et al. 2001. Characterization of human monoclonal antibodies selected with a hypervariable loop-deleted recombinant HIV-1(IIIB) gp120. Immunol Lett, 79(3): 209–213.PubMedCrossRefGoogle Scholar
  18. 18.
    Kang S M, Quan F S, Huang C, et al. 2005. Modified HIV envelope proteins with enhanced binding to neutralizing monoclonal antibodies. Virology, 331(1): 20–32.PubMedCrossRefGoogle Scholar
  19. 19.
    Kim Y B, Han D P, Cao C, et al. 2003. Immunogenicity and ability of variable loop-deleted human immunodeficiency virus type 1 envelope glycoproteins to elicit neutralizing antibodies. Virology, 305(1): 124–137.PubMedCrossRefGoogle Scholar
  20. 20.
    Kwong P D, Doyle M L, Casper D J, et al. 2002. HIV-1 evades antibody-mediated neutralization through conformational masking of receptor-binding sites. Nature, 420(6916): 678–682.PubMedCrossRefGoogle Scholar
  21. 21.
    Kwong P D, Wyatt R, Robinson J, et al. 1998. Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature, 393(6686): 648–659.PubMedCrossRefGoogle Scholar
  22. 22.
    Moulard M, Phogat S K, Shu Y, et al. 2002. Broadly cross-reactive HIV-1-neutralizing human monoclonal Fab selected for binding to gp120-CD4-CCR5 complexes. Proc Natl Acad Sci USA, 99(10): 6913–6918.PubMedCrossRefGoogle Scholar
  23. 23.
    Pantophlet R, Ollmann S E, Poignard P, et al. 2003. Fine mapping of the interaction of neutralizing and nonneutralizing monoclonal antibodies with the CD4 binding site of human immunodeficiency virus type 1 gp120. J Virol, 77(1): 642–658.PubMedCrossRefGoogle Scholar
  24. 24.
    Parren P W, Moore J P, Burton D R, et al. 1999. The neutralizing antibody response to HIV-1: viral evasion and escape from humoral immunity. AIDS, 13Suppl A: S137–S162.PubMedGoogle Scholar
  25. 25.
    Quan F S, Sailaja G, Skountzou I, et al. 2007. Immunogenicity of virus-like particles containing modified human immunodeficiency virus envelope proteins. Vaccine, 25(19): 3841–3850.PubMedCrossRefGoogle Scholar
  26. 26.
    Sanders R W, Venturi M, Schiffner L, et al. 2002. The mannose-dependent epitope for neutralizing antibody 2G12 on human immunodeficiency virus type 1 glycoprotein gp120. J Virol, 76(14): 7293–7305.PubMedCrossRefGoogle Scholar
  27. 27.
    Weiner M P, Costa G L. 1994. Rapid PCR site-directed mutagenesis. PCR Methods Appl, 4(3): S131–S136.PubMedGoogle Scholar
  28. 28.
    Yang X, Wyatt R, Sodroski J. 2001. Improved elicitation of neutralizing antibodies against primary human immunodeficiency viruses by soluble stabilized envelope glycoprotein trimers. J Virol, 75(3): 1165–1171.PubMedCrossRefGoogle Scholar
  29. 29.
    Yang Z Y, Chakrabarti B K, Xu L, et al. 2004. Selective modification of variable loops alters tropism and enhances immunogenicity of human immunodeficiency virus type 1 envelope. J Virol, 78(8): 4029–4036.PubMedCrossRefGoogle Scholar
  30. 30.
    Zwick M B, Labrijn A F, Wang M, et al. 2001. Broadly neutralizing antibodies targeted to the membrane-proximal external region of human immunodeficiency virus type 1 glycoprotein gp41. J Virol, 75(22): 10892–10905.PubMedCrossRefGoogle Scholar

Copyright information

© Wuhan Institute of Virology, CAS and Springer-Verlag GmbH 2008

Authors and Affiliations

  • Jian-hui Nie
    • 1
  • Chun-tao Zhang
    • 1
  • Hui-hui Chong
    • 1
    • 2
  • Xue-ling Wu
    • 1
  • Chun-yu Liu
    • 1
  • Yu Wu
    • 1
  • Chen-yan Zhao
    • 1
  • Lin-qi Zhang
    • 3
  • You-chun Wang
    • 1
    Email author
  1. 1.Department of Cell BiologyNational Institute for the Control of Pharmaceutical and Biological ProductsBeijingChina
  2. 2.College of Life ScienceJilin UniversityChangchunChina
  3. 3.Aaron Diamond AIDS Research CenterThe Rockefeller UniversityNew YorkUSA

Personalised recommendations