Skip to main content

Pathogenicity of diatraea saccharalis densovirus to host insets and characterization of its viral genome

Abstract

Pathogenicity of the Diatraea saccharalis densovirus (DsDNV) was tested on its host larvae. The results showed that up to 4 days after inoculation, no larvae mortality was observed and the infected larvae started to exhibit the infection symptoms from the fourth day. After 5 days of infection, the cumulative mortality of infected larvae increased significantly and reached 60% after 12 days and 100% after 21 days of infection, whereas that of the control group was only 10% and 20%, respectively, after same periods of infection, suggesting that the high mortality of infected larvae groups was due to the high pathogenicity of DsDNV. The size of the DsDNA was determined by Electron microscopy visualization of viral DNA molecules and gel electrophoresis of both native and endonuclease digested DNA fragments. The total length of the native DsDNA was about 5.95 kb. The DsDNV DNA was digested with 16 restriction enzymes and a restriction map of those enzymes was constructed with 41 restriction sites. Comparison of the restriction map of the DsDNV genome with those of the genomes of Junonia coenia densovirus (JcDNV) and Galleria mellonella densovirus (GmDNV) indicated that the three densovirus genomes were found to share many identical restriction sites. Thus, most of the restriction sites of the following endonucleases Bam H I, Hha I, Xba I, Cla I, Asp 700, Spe I, Nco I and Bcl I, were found to be conserved among the three densovirus genomes. Symmetrical cleavage sites mapped at the both ends of the genome suggested the presence of inverted terminal repeats (ITRs) whose size was estimated to be about 500 bp. The similar genome size, almost identical restriction sites and presence of an ITR of about 500 bp for these three densoviruses suggested that they belong to the same group of ambisense densoviruses.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Afanasiev B N, Galyov E E, Buchatsky L P, et al. 1991. Nucleotide sequence and genomic organization of Aedes densonucleosis virus[J]. Virology, 185(1): 323–336.

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Astele C R. 1990. Terminal hairpins of parvovirus genome and their role in DNA replication[M]. Tijssen P ed. Handbook of Parvoviruse. vol. 1. Boca Raton: CRC Press, 59–79.

    Google Scholar 

  3. 3.

    Bergoin M, Tijssen P. 2000. Molecular biology of Densovirinae[M]. Faisst S, Rommelaere J, ed, Parvoviruses. From molecular biology to pathology and therapeutic uses. Karger: Basel, 12–32. 4.

    Chapter  Google Scholar 

  4. 4.

    Boublik Y, Jousset F X, Bergoin M. 1994. Complete nucleotide sequence and genomic organization of the Aedes albopictus parvovirus (AaPV) pathogenic for Aedes aegypti larvae [J]. Virology, 200: 752–763.

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Carlson J, Suchman E, Buchatsky L. 2006. Densoviruses for control and genetic manipulation of mosquitoes[J]. Adv Virus Res, 68: 361–392.

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Chao Y C, Young S Y, Kim K S. 1985. A newly isolated densonucleosis virus from Pseudoplusia includens (Leptidoptera: Noctuidae) [J]. J Invertehr Patho, 46: 70–82.

    Article  Google Scholar 

  7. 7.

    Chapman M S, G R M. 1993. Structure, sequence, and function correlations among parvoviruses [J]. Virology, 194 (11): 491–508.

    Article  Google Scholar 

  8. 8.

    Cotmore S F, Tattersall P. 1987. The autonomously replicating parvoviruses of vertebrates[J]. Adv Virus Res, 33: 91–174.

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Dumas B, Jourdan M, Pascaud A M, et al. 1992. Complete nucleotide sequence of the cloned infectious genome of Junonia coenia densovirus reveals an organization unique among parvoviruses[J]. Virology, 191(1): 202–222.

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    El-Far M, Li Y, Fediere G, et al. 2004. Lack of infection of vertebrate cells by the densovirus from the maize worm Mythimna loreyi (MlDNV)[J]. Virus Res, 99(1): 17–24.

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Fédière G. 2000. Epidemiology and pathology of Densovirinae[M]. Faisst S, Rommelaere J, ed. Parvoviruses. From mo-lecular biology to pathology and therapeutic uses. Karger: Basel, Switzerland. 1–11.

    Google Scholar 

  12. 12.

    Fédière G, El-Far M, Li Y. 2004. Expression strategy of den-sonucleosis virus from Mythimna loreyi [J]. Virology, 320: 181–189.

    PubMed  Article  Google Scholar 

  13. 13.

    Fédière G, Li Y, Zádori Z. 2002. Genome organization of Casphalia extranea densovirus, a new Iteravirus [J]. Virology, 292: 299–308.

    PubMed  Article  Google Scholar 

  14. 14.

    Jiang H, Zhang J M, Wang J P, et al. 2006. Genetic engi-neering of Periplaneta fuliginosa densovirus as an improved biopesticide[J]. Arch Virol, 152: 383–394.

    PubMed  Article  Google Scholar 

  15. 15.

    Jousset F X, Jourdan M, Compagnon B, et al. 1990. Restriction maps and sequence homologies of two densovirus genomes[J]. J Gen Virol, 71(10): 2463–2466.

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Kelly D C, Bud H M. 1978. Densonucleosis virus DNA: analysis of fine structure by electron microscopy and agarose gel electrophoresis [J]. J Virol, 40: 33–43.

    Article  CAS  Google Scholar 

  17. 17.

    Kelly D C, Moore N F, Spilling C R, et al. 1980. Densonucleosis Virus Structural Proteins[J]. J Virol, 36(1): 224–235.

    PubMed  CAS  Google Scholar 

  18. 18.

    Kurstak E, Belloncik S, Brailovsky C. 1969. Transformation of mouse L cells by an invertebrate virus: densonucleosis virus (DNV)[J]. C R Acad Sci Hebd Seances Acad Sci D, 269(17): 1716–1719.(Fre)

    PubMed  CAS  Google Scholar 

  19. 19.

    Li Y, Zádori Z, Bando H. 2001. Genome organization of the densovirus from Bombyx mori (BmDNV-1) and enzyme activity of its capsid [J]. J Gen Virol, 82: 2821–2825.

    PubMed  CAS  Google Scholar 

  20. 20.

    Macedo N, Botelho P S M, PA VAN O H O. 1989. Utilisation d’insecticides viraux et de regulateurs de croissance pour le contr le de Diatraea saccharalis (Fabr., 1794) par voie aerienne[R].Proc. 20th /SSC/’Congr, October 12–21,Sao Paulo (Brazil).

  21. 21.

    Macedo N, Bothelho P S M. 1986. Ten years of biological control of D. saccharalis by Apanteles flavipes, in Sao Paulo state (Brazil)[R]. Congress Society Sugar Cane Technologists, August 21–31,1986, Jakarta, 551–562.

  22. 22.

    Margarido L A C, Castilho H J. 1988. Determination du niveau de dommages economiques du foreur de la canne a sucre, Diatraea saccharalis, pour les distilleries d’alcool[J]. Bra-zil Acurarero, 106: 41–46.

    Google Scholar 

  23. 23.

    Meynadier G, Galichet P F, Veyrunes J C. 1977. Mise en evidence d’une densonucleose chez Diatraea saccharalis (Lep. Pyralidae)[J]. Entomophaga, 22: 115–120.

    Article  Google Scholar 

  24. 24.

    Meynardier G, Vago C, Plantevin G. 1964. Virose d’un type inhabituel chez le lépidoptère Galleria mellonella L [J]. Rev Zool Agric Appl, 63: 207–209.

    Google Scholar 

  25. 25.

    Nakagaki M, Kawase S. 1980. Structural proteins of densonucleosis virus isolated from the silkworm Bomhyx mori infected with the flacherie virus[J]. J Invertebr Pathol, 36: 166–171.

    Article  CAS  Google Scholar 

  26. 26.

    Poitout S., Bues R. 1970. Elevage de plusieurs espèces de lépidoptères noctuidae sur le milieu artificiel riche et sur milieu artificiel simplifié [J]. Ann Zool Anim, 2: 79–91.

    Google Scholar 

  27. 27.

    Samulski R J, Chang L S, Shenk T. 1989. Helper-free stocks of recombinant adeno-associated viruses: normal integration does not require viral gene expression[J]. J Virol, 63(9): 3822–3828.

    PubMed  CAS  Google Scholar 

  28. 28.

    Shike H, Dhar A K, Burns J C, et al. 2000. Infectious hypodermal and hematopoietic necrosis virus of shrimp is related to mosquito brevidensoviruses[J]. Virology, 277(1): 167–177.

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Snyder R O, Samulski R J, Muzyczka N. 1990. In vitro re-solution of covalently joined AAV chromosome ends[J]. Cell, 60(1): 105–113.

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Tattersall P. 2006. The evolution of parvovirus taxonomy[M]. Kerr J R ed. Parvoriruses. Landon: Hodder Arnold, 5–14.

    Google Scholar 

  31. 31.

    Tijssen P, Bando H, Li Y, et al. 2006. Evolution of Densoviruses[M]. Kerr J R ed. Parvoriruses. Landon: Hodder Arnold, 55–66.

    Google Scholar 

  32. 32.

    Tijssen P, Bergoin M. 1995. Densonucleosis viruses constitute an increasingly diversified subfamily among the parvoviruses [J]. Semin Virology, 6: 347–355.

    Article  CAS  Google Scholar 

  33. 33.

    Tijssen P, Li Y, El-Far M, et al. 2003. Organization and expression strategy of the ambisense genome of densonucleosis virus of Galleria mellonella[J]. J Virol, 77(19): 10357–10365.

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Tijssen P, van den Hurk J, Kurstak E. 1976. Biochemical, biophysical, and biological properties of densonucleosis virus. I. Structural proteins [J]. J Virol, 17: 686–691.

    PubMed  CAS  Google Scholar 

  35. 35.

    Vago C, Duthoit J L, Delahaye F. 1966. Les lésions nucléaires de “virose a noyaux denses” du lepidoptere Galleria mellonella [J]. Arch Ges Virusforsch, 18: 344–349.

    Article  Google Scholar 

  36. 36.

    van Regenmortel M H V, Fauquet C M, Bishop D H L. 2000. Virus taxonomy: classification and nomenclature of viruses [M]. The seventh report of the International Committee on Taxonomy of Viruses. San Diego: Academic Press.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yi Li.

Additional information

Foundation item: National Natural Science Foundation of China (30670081); Granted by IRD (Institute de Recherche pour developpement)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kouassi, N., Peng, Jx., Li, Y. et al. Pathogenicity of diatraea saccharalis densovirus to host insets and characterization of its viral genome. Virol. Sin. 22, 53–60 (2007). https://doi.org/10.1007/s12250-007-0062-8

Download citation

CLC number

  • S852.65

Keys words

  • Pathogenicity
  • Densovirus
  • Diatraea saccharalis
  • Genomic DNA
  • Restriction map