Virologica Sinica

, Volume 22, Issue 2, pp 94–107 | Cite as

Baculovirus RNA polymerase: Activities, composition, and evolution

Article

Abstract

Baculoviruses are the only nuclear replicating DNA-containing viruses that encode their own DNA-directed RNA polymerase (RNAP). The baculovirus RNAP is specific for the transcription of genes expressed after virus DNA replication. It is composed of four subunits, making it the simplest multisubunit RNAP known. Two subunits contain motifs found at the catalytic center of other RNAPs and a third has capping enzyme functions. The function of the fourth subunit is not known. Structural studies on this unique RNAP will provide new insights into the functions of this enzyme and the regulation of viral genes and may be instrumental to optimize the baculovirus gene expression system.

Key words

Baculoviruses Virus DNA replication Regulation of viral genes RNA polymerase 

CLC number

Q786 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Acharya A, Gopinathan K P. 2002. Characterization of late gene expression factors lef-9 and lef-8 from Bombyx mori nucleopolyhedrovirus. J Gen Virol, 83: 2015–2023.PubMedGoogle Scholar
  2. 2.
    Allison L A, Moyle M, Shales M, et al. 1985. Extensive homology among the largest subunits of eukaryotic and prokaryotic RNA polymerases. Cell, 42: 599–610.PubMedCrossRefGoogle Scholar
  3. 3.
    Beniya H, Funk C J, Rohrmann G F, et al. 1996. Purification of a virus-induced RNA polymerase from Autographa californica nuclear polyhedrosis virus-infected Spodoptera frugiperda cells that accurately initiates late and very late transcription in vitro. Virology, 216: 12–19.PubMedCrossRefGoogle Scholar
  4. 4.
    Berretta M F, Passarelli A L. 2006. Function of Spodoptera exigua nucleopolyhedrovirus late gene expression factors in the insect cell line SF-21. Virology, 355: 82–93.PubMedCrossRefGoogle Scholar
  5. 5.
    Brown M, Crawford A M, Faulkner P. 1979. Genetic analysis of a baculovirus Autographa californica nuclear polyhedrosis virus part 1 isolation of temperature sensitive mutants and assortment into complementation groups. J Virol, 31: 190–198.PubMedGoogle Scholar
  6. 6.
    Brown M, Faulkner P. 1980. A partial genetic map of the baculovirus Autographa californica nuclear polyhedrosis virus based on recombination studies with ts mutants. J Gen Virol, 48: 247–252.Google Scholar
  7. 7.
    Carstens E B, Chan H, Yu H, et al.1994. Genetic analyses of temperature-sensitive mutations in baculovirus late expression factors. Virology, 204: 323–337.PubMedCrossRefGoogle Scholar
  8. 8.
    Carstens E B, Lu A L, Chan H B. 1993. Sequence, transcriptional mapping, and overexpression of p47, a baculovirus gene regulating late gene expression. J Virol, 67: 2513–2520.PubMedGoogle Scholar
  9. 9.
    Chisholm G E, Henner D J. 1988. Multiple early transcripts and splicing of the Autographa californica nuclear polyhedrosis virus ie-1 gene. J Virol, 62: 3193–3200.PubMedGoogle Scholar
  10. 10.
    Corden J L. 1990. Tails of RNA polymerase II. Trends Biol Sci, 15: 413–416.Google Scholar
  11. 11.
    Cramer P, Bushnell D A, Fu J, et al. 2000. Architecture of RNA polymerase II an implications for the transcription mechanism. Science, 288: 640–649.PubMedCrossRefGoogle Scholar
  12. 12.
    Cramer P, Bushnell D A, Kornberg R D. 2001. Structural basis of transcription: RNA polymerase II at 2.8 Angstrom resolution. Science, 292: 1861–1876.CrossRefGoogle Scholar
  13. 13.
    Crouch E A, Passarelli A L. Unpublished results.Google Scholar
  14. 14.
    Duncan R, Faulkner P. 1982. Bromodeoxy uridine induced mutants of Autographa californica nuclear polyhedrosis virus defective in occlusion body formation. J Gen Virol, 62: 369–374.PubMedGoogle Scholar
  15. 15.
    Durantel D, Croizier G, Ravallec M, et al. 1998. Temporal expression of hte AcMNPV lef-4 gene and subcellular localization of the protein. Virology, 241: 276–284.PubMedCrossRefGoogle Scholar
  16. 16.
    Evers R, Hammer A, Köck J, et al. 1989. Trypanosoma brucei contains two RNA polymerase II largest subunit genes with an altered C-terminal domain. Cell, 56: 585–597.PubMedCrossRefGoogle Scholar
  17. 17.
    Fuchs L Y, Woods M S, Weaver R F. 1983. Viral transcription during Autographa californica nuclear polyhedrosis virus infection: a novel RNA polymerase induced in infected Spodoptera frugiperda cells. J Virol, 43: 641–646.Google Scholar
  18. 18.
    Funk C J, Harwood S H, Rohrmann G F. 1998. Differential stability of baculovirus late transcription complexes during initiation and elongation. Virology, 241: 131–140.PubMedCrossRefGoogle Scholar
  19. 19.
    Glocker B, Hoopes J, Hodges R R L, et al. 1993. In vitro transcription from baculovirus late gene promoters: accurate mRNA initiation by nuclear extracts prepared from infected Spodoptera frugiperda cells. J Virol, 67: 3771–3776.PubMedGoogle Scholar
  20. 20.
    Gordon J D, Carstens E B. 1984. Phenotypic characterization and physical mapping of a temperature sensitive mutant of Autographa californica nuclear polyhedrosis virus defective in DNA synthesis. Virology, 138: 69–81.PubMedCrossRefGoogle Scholar
  21. 21.
    Gross C H, Shuman S. 1998. Characterization of a baculovirus-encoded RNA 5′-triphosphatase. J Virol, 72: 7057–7063.PubMedGoogle Scholar
  22. 22.
    Gross C H, Shuman S. 1998. RNA 5′-triphosphatase, nucleoside triphosphatase, and guanylyltransferase activities of baculovirus LEF-4 protein. J Virol, 72: 10020–10028.PubMedGoogle Scholar
  23. 23.
    Grula M A, Buller P L, Weaver R F. 1981. α-amanitin-resistant viral RNA synthesis in nuclei isolated from nuclear polyhedrosis virus-infected Heliothis zea larvae and Spodoptera frugiperda cells. J Virol, 38:916–921.PubMedGoogle Scholar
  24. 24.
    Guarino L A, Dong W, Jin J. 2002. In vitro activity of the baculovirus late expression factor LEF-5. J Virol. 76: 12663–12675.PubMedCrossRefGoogle Scholar
  25. 25.
    Guarino L A, Jin J, Dong W. 1998. Guanylyltransferase activity of the LEF-4 subunit of baculovirus RNA polymerase. J Virol, 72: 10003–10010.PubMedGoogle Scholar
  26. 26.
    Guarino L A, Xu B, Jin J, et al. 1998. A virus-encoded RNA polymerase purified from bacul-ovirus-infected cells. J Virol, 72: 7985–7991.PubMedGoogle Scholar
  27. 27.
    Hayakawa T, Ko R, Okano K, et al. 1999. Sequence analysis of the Xestia c-nigrum granulovirus genome. Virology, 262: 277–297.PubMedCrossRefGoogle Scholar
  28. 28.
    Ho C K, Pie Y, Shuman S. 1998. Yeast and viral RNA 5′ triphosphatases comprise a new nucleoside triphosphatase family. J Biol Chem, 273: 34151–34156.PubMedCrossRefGoogle Scholar
  29. 29.
    Huh N E, Weaver R F. 1990. Identifying the RNA polymerases that synthesize specific transcripts of the Autographa californica nuclear polyhedrosis virus. J Gen Virol, 71: 195–202.PubMedCrossRefGoogle Scholar
  30. 30.
    Jin J, Dong W, Guarino L A. 1998. The LEF-4 subunit of baculovirus RNA polymerase has RNA 5′-triphosphatase and ATPase activities. J Virol, 72: 10011–10019.PubMedGoogle Scholar
  31. 31.
    Jin J, Guarino L A. 2000. 3′-end formation of baculovirus late RNAs. J Virol, 74: 8930–8937.PubMedCrossRefGoogle Scholar
  32. 32.
    Jun-Chuan Q, Weaver R F. 1982. Capping of viral RNA in cultured Spodoptera frugiperda cells infected with Autographa californica nuclear polyhedrosis virus. J Virol, 43: 234–240.PubMedGoogle Scholar
  33. 33.
    Knebel-Mörsdorf D, Quadt I, Li Y, et al. 2006. Expression of baculovirus late and very late genes dependes on LEF-4, a component of the viral RNA polymerase whose guanyltransferase function is essential. J Virol, 80: 4168–4173.PubMedCrossRefGoogle Scholar
  34. 34.
    Kool M, Ahrens C H, Goldbach R W, et al. 1994. Identification of genes involved in DNA replication of the Autographa californica baculovirus. Proc Natl Acad Sci USA, 91: 11212–11216.PubMedCrossRefGoogle Scholar
  35. 35.
    Kovacs G R, Guarino L A, Graham B L, et al. 1991. Identification of spliced baculovirus RNAs expressed late in infection. Virology, 185: 633–643.PubMedCrossRefGoogle Scholar
  36. 36.
    Lauzon H A M, Lucarotti C J, Krell P J, et al. 2004. Sequence and organization of the Neodiprion lecontei nucleopolyhedrovirus genome. J Virol, 78: 7023–7035.PubMedCrossRefGoogle Scholar
  37. 37.
    Lee H H, Miller L K. 1979. Isolation, complementation, and initial characterization of temperature-sensitive mutants of the baculovirus Autographa californica nuclear polyhedrosis virus. J Virol, 31: 240–252.PubMedGoogle Scholar
  38. 38.
    Li L, Harwood S H, Rohrmann G F. 1999. Identification of additional genes that influence baculovirus late gene expression. Virology, 255: 9–19.PubMedCrossRefGoogle Scholar
  39. 39.
    Li Y, Miller L K. 1995. Properties of a baculovirus mutant defective in the protein phosphatase gene. J Virol, 69: 4533–4537.PubMedGoogle Scholar
  40. 40.
    Lu A, Carstens E B. 1991. Nucleotide sequence of a gene essential for viral DNA replication in the baculovirus Autographa californica nuclear polyhedrosis virus. Virology, 181: 336–347.PubMedCrossRefGoogle Scholar
  41. 41.
    Lu A, Miller L K. 1994. Identification of three late expression factor genes within the 33.8-to 43.4-map-unit region of Autographa californica nuclear polyhedrosis virus. J Virol, 68: 6710–6718.PubMedGoogle Scholar
  42. 42.
    Lu A, Miller L K. 1995. The roles of eighteen baculovirus late expression factor genes in transcription and DNA replication. J Virol, 69: 975–982.PubMedGoogle Scholar
  43. 43.
    Mans R M W, Knebel-Mörsdorf D. 1999. Mitochondrial DNA acts as a potential promoter of the baculovirus RNA polymerase. Biol Chem, 380: 579–583.PubMedCrossRefGoogle Scholar
  44. 44.
    Martins A, Shuman S. 2002. The domain of mammalian capping enzyme can be inverted and baculovirus phosphatase can function in cap formation in vivo. Virology, 304: 167–175.PubMedCrossRefGoogle Scholar
  45. 45.
    Martins A, Shuman S. 2001. Mutational analysis of baculovirus capping enzyme Lef4 delineates an autonomous triphosphatase domain and structural determinants of divalent cation specificity. J Biol Chem, 276: 45522–45529.PubMedCrossRefGoogle Scholar
  46. 46.
    McLachlin J R, Miller L K. 1994. Identification and characterization of vlf-1, a baculovirus gene involved in very late gene expression. J Virol, 68: 7746–7756.PubMedGoogle Scholar
  47. 47.
    Miller L K, Trimarchi R E, Browne D, et al. 1983. A temperature sensitive mutant of the baculovirus Autographa californica nuclear polyhedrosis virus defective in an early function required for further gene expression. Virology, 126: 376–380.CrossRefPubMedGoogle Scholar
  48. 48.
    Mooney R A, Landick R. 1999. RNA polymerase unveiled. Cell, 98:687–690.PubMedCrossRefGoogle Scholar
  49. 49.
    Mustaev A, Kashlev M, Zaychikov E, et al. 1993. Active center rearrangement in RNA polymerase initiation complex. J Biol Chem, 268: 19185–19187.PubMedGoogle Scholar
  50. 50.
    Mustaev A, Kozlov M, Markovtsov V, et al. 1997. Modular organization of the catalytic center of RNA polymerase. Proc Natl Acad Sci USA, 94: 6641–6645.PubMedCrossRefGoogle Scholar
  51. 51.
    Naryshkina T, Rogulja D, Golub L, et al. 2000. Inter-and intrasubunit interactions during the formation of RNA polymerase assembly intermediate. J Biol Chem, 275: 31183–31190.PubMedCrossRefGoogle Scholar
  52. 52.
    Partington S, Yu H, Lu A, et al. 1990. Isolation of temperature sensitive mutants of Autographa californica nuclear polyhedrosis virus phenotype characterization of baculovirus mutants defective in very late gene expression. Virology, 175: 91–102.PubMedCrossRefGoogle Scholar
  53. 53.
    Passarelli A L, Miller L K. 1993. Identification of genes encoding late expression factors located between 56.0 and 65.4 map units of the Autographa californica nuclear polyhedrosis virus genome. Virology, 197: 704–714.PubMedCrossRefGoogle Scholar
  54. 54.
    Passarelli A L, Miller L K. 1993. Three baculovirus genes involved in late and very late gene expression: ie-1, ie-n, and lef-2. J Virol, 67: 2149–2158.PubMedGoogle Scholar
  55. 55.
    Passarelli A L, Todd J W, Miller L K. 1994. A baculovirus gene involved in late gene expression predicts a large polypeptide with a conserved motif of RNA polymerases. J Virol, 68: 4673–4678.PubMedGoogle Scholar
  56. 56.
    Phatnani H P, Greenleaf A L. 2006. Phosphorylation and functions of the RNA polymerase II CTD. Genes & Development, 20: 2922–2936.CrossRefGoogle Scholar
  57. 57.
    Potter K N, Miller L K. 1980. Correlating genetic mutations of a baculovirus with the physical map of the DNA genome. In: Animal virus genetics: ICN-UCLA Symposia on Molecular and Cellular Biology (Fields B, Jaenisch R, Fox C. F. ed.). New York: Academic Press, p71–80.Google Scholar
  58. 58.
    Rapp J C, Wilson J A, Miller L K. 1998. Nineteen baculovirus open reading frames, including LEF-12, support late gene expression. J Virol, 72: 10197–10206.PubMedGoogle Scholar
  59. 59.
    Ribeiro B, Hutchinson K, Miller L K. 1994. A mutant baculovirus with a temperature sensitive IE-1 trans-regulatory protein. J Virol, 68: 1075–1084.PubMedGoogle Scholar
  60. 60.
    Sehrawat S, Gopinathan K P. 2002. Temporal expression profile of late gene expression factor 4 from Bombyx mori nucleopolyhedrovirus. Gene, 294: 67–75.PubMedCrossRefGoogle Scholar
  61. 61.
    Sehrawat S, Srinivasan N, Gopinathan K P. 2002. Functional characterization and structural modeling of late expressin factor 4 from Bombyx mori nucleopolyhedrovirus. Biochem J, 368: 159–169.PubMedCrossRefGoogle Scholar
  62. 62.
    Shikata M, Sano Y, Hashimoto Y, et al. 1998. Isolation and characterization of a temperature-sensitive mutant of Bombyx mori nucleopolyhedrovirus for a putative RNA polymerase gene. J Gen Virol, 79: 2071–2078.PubMedGoogle Scholar
  63. 63.
    Sonntag K-C, Darai G. 1996. Evolution of viral DNA-dependent RNA polymerases. Virus Genes, 11: 271–284.CrossRefGoogle Scholar
  64. 64.
    Sousa R, Chung Y J, Rose J P, et al. 1993. Crystal structure of bacteriophage T7 RNA polymerase at 3.3 Å resolution. Nature, 364: 593–599.PubMedCrossRefGoogle Scholar
  65. 65.
    Steinberg T H, Mathews D E, Durbin R D, et al. 1990. Tagetitoxin: a new inhibitor of eukaryotic transcription by RNA polymerase III. J Biol Chem, 265: 499–505.PubMedGoogle Scholar
  66. 66.
    Stiller J W, Duffield E C S, Hall B D. 1998. Amitochondriate amoebae and the evolution of DNA-dependent RNA polymerase II. Proc Natl Acad Sci USA, 95: 11769–11774.PubMedCrossRefGoogle Scholar
  67. 67.
    Stiller J W, McConaughy B L, Hall B D. 2000. Evolutionary complementation for polymerase II CTD function. Yeast, 16: 57–64.PubMedCrossRefGoogle Scholar
  68. 68.
    Sweetser D, Nonet M, Young R A. 1987. Prokaryotic and eukaryotic RNA polymerases have homologous core subunits. Proc Natl Acad Sci USA, 84: 1192–1196.PubMedCrossRefGoogle Scholar
  69. 69.
    Takagi T, Taylor G S, Kusakabe T, et al. 1998. A protein tyrosine phasphatase-like protein from baculovirus has RNA 5′ triphosphatase and diphosphatase activities. Proc Natl Acad Sci USA, 95: 9808–9812.PubMedCrossRefGoogle Scholar
  70. 70.
    Titterington J S, Nun T K, Passarelli A L. 2003. Functional dissection of the baculovirus late expression factor-8: Sequence requirements for late gene promoter activation. J Gen Virol, 84: 1817–1826.PubMedCrossRefGoogle Scholar
  71. 71.
    Todd J W, Passarelli A L, Lu A, et al. 1996. Factors regulating baculovirus late and very late gene expression in transient-expression assays. J Virol, 70: 2307–2317.PubMedGoogle Scholar
  72. 72.
    Todd J W, Passarelli A L, Miller L K. 1995. Eighteen baculovirus genes, including lef-11, p35, 39K, and p47, support late gene expression. J Virol, 69: 968–974.PubMedGoogle Scholar
  73. 73.
    Vanarsdall A L, Okano K, Rohrmann G F. 2006. Characterization of the role of very late expression factor 1 in baculovirus capsid structure and DNA processing. J Virol, 80: 1724–1733.PubMedCrossRefGoogle Scholar
  74. 74.
    Woychik N A, Liao S-M, Kolodziej P A, et al. 1990. Subunits shared by eukaryotic nuclear RNA polymerases. Genes & Development, 4: 313–323.CrossRefGoogle Scholar
  75. 75.
    Wu X, Guarino L A. 2003. Autographa californica nucleopolyhedrovirus orf69 encodes an RNA cap (nucleoside-2′-O)-methyltransferase. J Virol, 77: 3430–3440.PubMedCrossRefGoogle Scholar
  76. 76.
    Xu B, Yoo S, Guarino L A. 1995. Differential transcription of baculovirus late and very late promoters: fractionation of nuclear extracts by phosphocellulose chromatography. J Virol, 69: 2912–2917.PubMedGoogle Scholar
  77. 77.
    Yang C L, Stetler D A, Weaver R. F. 1991. Structural comparison of the Autographa californica nuclear polyhedrosis virus-induced RNA polymerase and the 3 nuclear RNA polymerases from the host, Spodoptera frugiperda. Virus Res, 20: 251–264.PubMedCrossRefGoogle Scholar
  78. 78.
    Zaychikov E, Martin E, Denissova L, et al. 1996. Mapping of catalyltic residues in the RNA polymerase active center. Science, 273: 107–109.PubMedCrossRefGoogle Scholar
  79. 79.
    Zhang G, Campbell E A, Minakhin L, et al. 1999. Crystal structure of Thermus aquaticus core RNA polymerase at 3.3 Å resolution. Cell, 98: 811–824.PubMedCrossRefGoogle Scholar

Copyright information

© Wuhan Institute of Virology, CAS 2007

Authors and Affiliations

  1. 1.Molecular, Cellular, and Developmental Biology Program, Division of BiologyKansas State UniversityManhattanUSA

Personalised recommendations