Skip to main content

Advertisement

Log in

Green Synthesis of Silver Nanoparticles by Using Anthemis Tricolor Boiss., Factorial Design for Parameter Optimization, Characterization and In-Vitro Biological Activities

  • Original Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Purpose

The objectives of the study are to obtain silver nanoparticles using Anthemis tricolor in an environmentally friendly, economical, and more effective way with green synthesis and also to determine the most appropriate parameters by examining the effects of preparation conditions on particle size, polydispersity index, and zeta potential using factorial design and further to compare the bioactivity results between water extract and silver nanoparticles. Thus, it is aimed to shed light on further studies on the lightening effects of nanoparticles on the skin.

Methods

In this study, silver nanoparticles were synthesized by reduction using Anthemis tricolor water extract and silver nitrate solution. Then, various characterization methods (Ultraviolet-Visible Spectroscopy, X-Ray Diffraction analysis) were studied. In addition, the effects of incubation temperature, silver nitrate solution concentration, and extract volume on particle size, zeta potential, and polydispersity index were investigated, and optimum parameters were determined. In addition, antioxidant activities of water extract and silver nanoparticles (DPPH Radical Scavenging Activity, ABTS Radical Cation Scavenging Activity, and Cupric Reducing Antioxidant Capacity) and tyrosinase inhibitory activities were determined.

Results

According to the results, it was observed that biosynthesis took place with the absorption peak at 440 nm. In addition, changes in peak intensities and shifts in values that occur at the end of nanoparticle formation were determined by Fourier Transform Infrared Spectroscopy. Cubic morphology was determined by Scanning Electron Microscopy. The existence of (111), (200), (220) and (311) planes was proved by X-ray diffraction analysis, confirming the existence of silver nanoparticles in a cubic structure. The optimized parameters were determined for silver nanoparticles obtained by incubating 5 ml of an extract with 1 mM silver nitrate solution at 25 °C. Polydispersity index, zeta potential, and particle size values were in the appropriate range. On the other hand, it was observed than silver nanoparticles’ antioxidant and tyrosinase inhibitory activities were higher than those the water extract.

Conclusion

It was concluded that Anthemis tricolor could be presented as an effective, stable, reducing agent. It also suggested that it can be used due to its antioxidant and tyrosinase inhibitory activities and directed to further studies for skin-lightening preparations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data materials are avalilable.

References

  1. Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK. Review on nanoparticles and nanostructured materials:history, sources, toxicity and regulations. Beilstein J Nanotech. 2018;9:1050–74. https://doi.org/10.3762%2Fbjnano.9.98.

    Article  CAS  Google Scholar 

  2. Kavitha KS, Syed B, Rakshith D, Kavitha HU, Yashwantha Rao HC, Harini BP, Satish S. Plants as green source towards synthesis of nanoparticles. Int Res J Biol Sci. 2013;6:66–76.

    Google Scholar 

  3. Yilmaz M, Turkdemir H, Kilic MA, Bayram E, Cicek A, Mete A, Ulug B. Biosynthesis of silver nanoparticles using leaves of Stevia rebaudiana Mater. Chem. Phys. 2011; 130: 1195–1202. https://doi.org/10.1016/j.matchemphys.2011.08.068.

  4. Kotakadi VS, Goddam SA, Venkata SK. Ficus fruit -mediated biosynthesis of silver nanoparticles and their antibacterial activity against antibiotic resistant E.coli strains. Curr. Nanosci. 2015; 11(4): 527–538. https://doi.org/10.2174/1573413711666150126225951.

  5. Goddam SA, Kotakadi VS, Gopal DVRS, Rao YS, Reddy AV. Efficient and robust biofabrication of silver nanoparticles by Cassia alata leaf extract and their antimicrobial activity. J Nanostructure Chem. 2014;4:73–82. https://doi.org/10.1007/s40097-014-0082-5.

    Article  Google Scholar 

  6. Baghizadeh A, Ranjbar S, Gupta VK, Asif M, Pourseyedi S, Karimi MJ, Mohammadinejad RJ, Mol. Liq. 2015;207:159–63. https://doi.org/10.1016/j.molliq.2015.03.029.

    Article  CAS  Google Scholar 

  7. Ajitha B, Ashok KRY, Sreedhara RP. Green synthesis and characterization of silver nanoparticles using Lantana camara leaf extract mat. Sci Eng C. 2015;49:373–81. https://doi.org/10.1016/j.msec.2015.01.035.

    Article  CAS  Google Scholar 

  8. Leonard K, Ahmmad B, Okamura H, Kurawaki. J. In-situ green synthesis of biocompatible Ginseng Capped gold nanoparticles with remarkable stability. Colloids Surf B-Bio-Interfaces. 2011;82(2):391–6. https://doi.org/10.1016/j.colsurfb.2010.09.020.

    Article  CAS  Google Scholar 

  9. Wang Y-X, Su W-C, Wang O, Lin Y-F, Zhou Y, Lin L-F, Ren S, Li Y-T, Chen Q-X, Shi Y. Antityrosinase and antioxidant activities of guanidine compounds and effect of guanylthiourea on melanogenesis. Process Biochem. 2019;85:84–96. https://doi.org/10.1016/j.procbio.2019.07.003.

    Article  CAS  Google Scholar 

  10. Zolghadri S, Bahrami A, Khan MTH, Munoz-Munoz J, Garcia-Molina F, Garcia-Canovas F, Saboury AA. A comprehensive review on tyrosinase inhibitors. J Enzyme İnhib Med Chem. 2019;34:279–309. https://doi.org/10.1080%2F14756366.2018.1545767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Davis PH. Flora of Turkey and East Aegean Islands. Edinburgh: Edinburgh University; 1984.

    Google Scholar 

  12. Karaalp C, Erel SB, Nalbantsoy A, Gucel S, Demirci B, Baser KHC. The essential composition of aerial parts of Anthemis Tricolor Boiss. From Cyprus. Nat Prod Res. 2014;28(7):488–91. https://doi.org/10.1080/14786419.2013.867857.

    Article  CAS  PubMed  Google Scholar 

  13. Sut S, Dall’Acqua S, Zengin G, Senkardes İ, Bulut G. Influence of different extraction techniques on the chemical profile and biological properties of Anthemis cotula L.: Multifuncitonal aspects for potential pharmaceutical applications. J Pharm Biol Sci. 2019;173:75–85. https://doi.org/10.1016/j.jpba.2019.05.028.

    Article  CAS  Google Scholar 

  14. Djeridane A, Yousfi M, Najdemi B, Vidal N, Lesgards JF, Stocker P. Screening of some Algerian medicinal plants for the phenolic compounds and their antioxidant activity. Eur Food Res Tech. 2007;224:801–9. https://doi.org/10.1007/s00217-006-0361-6.

    Article  CAS  Google Scholar 

  15. Gür M, Güder A, Verep D, Güney K, Özkan OE, Seki N, Kandemirli F. Some important plants for epilepsy treatment: antioxidant activity and flavonoid compositions. Iran J Sci Technol Trans Sci. 2018;42:1847–57. https://doi.org/10.1007/s40995-017-0361-3.

    Article  Google Scholar 

  16. Belhaoues S, Amri S, Bensouilah M. Major phenolic compounds, antioxidant and antibacterial activities of Anthemis praecox Link aerial parts. S Afr J Bot. 2020;131:200–5. https://doi.org/10.1016/j.sajb.2020.02.018.

    Article  CAS  Google Scholar 

  17. Bursal E, Aras A, Kılıç Ö, Buldurun K. Chemical constituent and radical scavenging antioxidant activity of Anthemis kotschyana Boiss. Nat Prod Res. 2020; online. https://doi.org/10.1080/14786419.2020.1723089.

  18. Sarıkürkçü C. Anthemis Chia: Biological Capacity and phytochemistry. Ind Crops Prod. 2020;153:112578. https://doi.org/10.1016/j.indcrop.2020.112578.

    Article  CAS  Google Scholar 

  19. Ghamipoor S, Fayyazi F, Bahadorikhalili S. Phytochemical synthesis of silver nanoparticles using Anthemis nobilis extract and its antibacterial activity. Z Phys Chem. 2020;234(3):531–40. https://doi.org/10.1515/zpch-2018-1288.

    Article  CAS  Google Scholar 

  20. Pourmortazavi SM, Taghdiri M, Makari V, Rahimi-Masrabadi M. Procedure optimization for green synthesis of silver nanoparticles by aqueous extract of Eucalyptus oleosa. Spectrochim Acta Mol Biomol Spec. 2015;136:1249–54. https://doi.org/10.1016/j.saa.2014.10.010.

    Article  CAS  Google Scholar 

  21. Ekaji FA, Akujobi CO, Umeh SI. Optimization of selected process parameter affecting yield of green synthesized silver nanoparticles and their antibacterial activity. Biotechnol J Int. 2021;25(2):25–36. https://doi.org/10.9734/BJI/2021/v25i230136.

    Article  Google Scholar 

  22. Pasupuleti VR, Prasad T, Shiekh RA. Biogenic silver nanoparticles using Rhinacanthus Nasutus leaf extract:synthesis, spectral analysis, and antimicrobial studies. Int J Nanomed. 2013;8:3355–64. https://doi.org/10.2147/IJN.S49000.

    Article  CAS  Google Scholar 

  23. Awwad AM, Salem NM. A green and facile approach for synthesis of magnetite nanoparticles. Mater Lett. 2012;2(6):208–13. https://doi.org/10.5923/j.nn.20120206.09.

    Article  CAS  Google Scholar 

  24. Dinesh S, Karthikeyan S, Arumugam P. Biosynthesis of silver nanoparticles from Glycyrrhiza glabra root extract. Arch Appl Sci Res. 2012;4:178–87.

    Google Scholar 

  25. Chunyan W, Valiyaveettil S. Correlation of biocapping agents with cytotoxic effects of silver nanoparticles on human tumor cells. RSC Adv; R Soc Chem. 2013;3:14329–38. https://doi.org/10.1039/c3ra41346b.

    Article  CAS  Google Scholar 

  26. Esmaeili MA, Sonboli A. Antioxidant, free radical scavenging activities of Salvia branchyantha and its protective effect against oxidative cell injury. Food Chem Toxicol. 2010;48:846–53. https://doi.org/10.1016/j.fct.2009.12.020.

    Article  CAS  PubMed  Google Scholar 

  27. Rer A, Pellegrini N, Proteggente A, Pannola A, Yong M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cotion decolorization assay. Free Rad Biol Med. 1999;26:1231–7. https://doi.org/10.1016/S0891-5849(98)00315-3.

    Article  Google Scholar 

  28. Apak R, Güçlü K, Özyürek M, Karademir SE. A novel total antioxidant capacity index for dietarypolyphenols, vitamin C and E, using their cupric ion reducing capability in the presence of neocuproine: the CUPRAC method. J Agric Food Chem. 2004;52:7970–81. https://doi.org/10.1021/jf048741x.

    Article  CAS  PubMed  Google Scholar 

  29. Masuda T, Yamashita D, Takeda Y, Yonemori S. Screening for tyrosinase inhibitors among extracts of seashore plants and identification of potent inhibitors from Garcinia Subelliptica. Biosci Biotechnol Biochem. 2005;69:197–201. https://doi.org/10.1271/bbb.69.197.

    Article  CAS  PubMed  Google Scholar 

  30. Riaz M, Ismail M, Ahmad B, Zahid N, Jabbour G, Khan MS, Mutreja V, Sareen S, Rafiq A, Faheem M, Shah MM, Khan MI, Bukhari SAI, Park J. Characterizations and analysis of the antioxidant, antimicrobial, and dye reduction ability of green synthesized silver nanoparticles. Green Process Synth. 2020;9:693–705.

    Article  Google Scholar 

  31. Sahudin S, Ayumi NS, Kaharudin N. Enhancement of skin permeation and penetration of Arbutin fabricated in Chitosan Nanoparticles as the Delivery System. Cosmetics. 2022;9:114. https://doi.org/10.3390/cosmetics9060114.

    Article  CAS  Google Scholar 

  32. Gupta V, Mohapatra S, Mishra H. Nanaotechnology in cosmetics and Cosmeceuticals- A review of latest advancements. Gels. 2022;8:173. https://doi.org/10.3390/gels8030173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sindhu PD, Mukerjhee A, Chandrasekoran N. Phytosynthesis of silver nanoparticles using Ceriops tagal and its antimicrobial potential against human pathogens. Int J Pharm Pharm Sci. 2013;5(3):349–52.

    Google Scholar 

  34. Nayak RR, Pradhan N, Behera D, Pradhan KM, Mishra S, Sukla LB, Mishra BK. Green synthesis of silver nanoparticle by Penicillium Purpurogenum NPMF: the process and optimization. J Nanopart Res. 2011;13:3129–37. https://doi.org/10.1007/s11051-010-0208-8.

    Article  CAS  Google Scholar 

  35. Jalab J, Abdelwahed W, Kitaz A, Al-Kayali E. Green synthesis of silver nanoparticles using aqueous extract of Acacia cyanophylla and its antibacterial activity. Heliyon. 2021;7:e08033. https://doi.org/10.1016/j.heliyon.2021.e08033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Coates J. Interpretation of infrared spectra, a practical approach. In: Meyers RA, editor. Encyclopedia of Analytical Chemistry. Chichester: John Wiley&Sons Ltd.; 2000. pp. 10815–37. https://doi.org/10.1002/9780470027318.a5606.

    Chapter  Google Scholar 

  37. Baharara J, Namvar F, Ramezani T, Mousavi M, Mohamad R. Silver nanoparticles biosynthesized using Achillea biebersteinii flower extract: apoptosis induction in MCF-7 cells via caspase activation and regulation of Bax and Bcl-2 gene expression. Molecules. 2015;20:2693–706. https://doi.org/10.3390/molecules20022693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ozer O, Kozmetoloji. Ege Üniversitesi Eczacılık Fakültesi Yayınları, 2020. no:4, İzmir.

  39. Ozer O, Ozguney I, Farmasötik Teknoloji I. Ege Üniversitesi Eczacılık Fakültesi, 2022; Yayın No: 7, İzmir.

  40. Morganti PDel Ciotto P, Carezzi F, Guarneri F, Jui Yeo Y. Skin lightening efficacy of New formulations enhanced by Chitin nanoparticles Delivery System. J Appl Cosmet. 2014;32:57–71.

    Google Scholar 

  41. Gajbhiye S, Sakharwade S, Silver Nanoparticles in Cosmetics. J Cosmet Dermatol Sci Appl. 2016;6:48–53. https://doi.org/10.4236/jcdsa.2016.61007.

    Article  CAS  Google Scholar 

  42. Smijs TGM, Bouwstra JA. Focus on skin as a possible port of entry for solid nanoparticles and the toxicological impact. J Biomed Nanotechnol. 2010;6:469–84. https://doi.org/10.1166/jbn.2010.1146.

    Article  CAS  PubMed  Google Scholar 

  43. Salvioni L, Morelli L, Ochoa E, Labra M, Fiandra L, Palugan L, Prosperi D, Colombo M. The emerging role of nanotechnology in skincare. Adv Colloid Interface Sci. 2021;293:102437. https://doi.org/10.1016/j.cis.2021.102437.

    Article  CAS  PubMed  Google Scholar 

  44. Khoskhoo MEK, Nematollahi F. Flavonoid content of Anthemis tinctoria and its application for green synthesis of silver nanoparticles. J Pharmacogn Phytochem. 2015;5(1):264–6.

    Google Scholar 

  45. Dehghanizade S, Arasteh J, Mirzaie A. Green synthesis of silver nanoparticles using Anthemis Atropatana extract: characterization and in vitro biological activities. Artif Cells Nanomed Biotechnol. 2018;46(1):160–8. https://doi.org/10.1080/21691401.2017.1304402.

    Article  CAS  PubMed  Google Scholar 

  46. Ajlouni A-W, Hamdan EH, Alshalawi RAE, Shaik MR, Khan M, Kuniyil M, Ansari A, Alwarthan MA, Khan M, Alkhathlan HZ, Shaik JP. Adil SF Green synthesis of silver nanoparticles using aerial part extract of the Anthemis pseudocotula Boiss. Plant and their biological activity. Molecules. 2023;28:246. https://doi.org/10.3390/molecules28010246.

    Article  CAS  Google Scholar 

  47. Fafal T, Taştan P, Tüzün BS, Özyazıcı M, Kıvçak B. Synthesis, characterization and studies on antioxidant activity of silver nanoparticles using Asphodelus Aestivus Brot. Aerial part extract. S Afr J Bot. 2017;112:346–53. https://doi.org/10.1016/j.sajb.2017.06.019.

    Article  CAS  Google Scholar 

  48. Şener İ, Gür M, Verep D, Güney K, Altuner EM. Antimicrobial activities and some flavonoids in extracts of some Medicinal plants. Indian J Pharm Educ Res. 2017;51:234–8. https://doi.org/10.5530/ijper.51.3s.20.

    Article  CAS  Google Scholar 

  49. Orlanda G, Zengin G, Ferrante C, Ronci M, Recinella L. Comprehensive chemical profiling and multidirectional biological investigation of two wild Anthemis species (Anthemis tinctoria var. Pallida and A. Cretica subsp. tenuiloba. Molecules. 2019;24:2582. https://doi.org/10.3390/molecules24142582.

    Article  CAS  Google Scholar 

Download references

Funding

We would like to thank Ege University BAP project number 23247 for financially supporting the research.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by [Burcu Sümer Tüzün], [Tuğçe Fafal], [Işık Özgüney] and [Bijen Kıvçak]. The first draft of the manuscript was written by [Burcu Sümer Tüzün] and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Burcu Sumer Tuzun.

Ethics declarations

Ethical Approval

Ethical approval is not needed. All authors are constent to participate and publish the manuscript.

Conflict of Interest

All authors state there are no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuzun, B.S., Fafal, T., Ozguney, I. et al. Green Synthesis of Silver Nanoparticles by Using Anthemis Tricolor Boiss., Factorial Design for Parameter Optimization, Characterization and In-Vitro Biological Activities. J Pharm Innov 19, 32 (2024). https://doi.org/10.1007/s12247-024-09842-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12247-024-09842-w

Keywords

Navigation