Skip to main content
Log in

Osteocompatible Zinc-Copper Substituted Hydroxyapatite Reinforced Biocomposites for Bone Tissue Regeneration

  • Original Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Purpose

The main purposes of this study were to explore a unique approach for producing nano-hierarchical morphological hydroxyapatite (n-HA) and to evaluate its potential applications in the field of biomedicine, specifically in orthopedics and orthodontics. The research question was whether using glucose 6-phosphate biomolecules as an organic phosphorus source through the pulsed ultrasonic process could generate n-HA nanoparticles with exceptional morphology.

Methods

The researchers employed the pulsed ultrasonochemical process to produce n-HA nanoparticles. The morphologies of the nanoparticles were examined using SEM and TEM techniques. The phase, structure, and composition of the nanoparticles were analyzed through DLS, XRD, XPS, and FTIR spectroscopic techniques. Biological evaluation experiments were conducted to assess the survivability and adhesion of the n-HA nanoparticles to osteoblast cells.

Results

The study found that the morphologies of the n-HA nanoparticles generated varied significantly with alterations in the pulsed ultrasonic settings. SEM and TEM analyses provided visual evidence of the unique nano-hierarchical morphology of the nanoparticles. DLS, Zeta potential, XRD, XPS, and FTIR spectroscopy techniques confirmed the phase, structure, and composition of the n-HA nanoparticles. The biological evaluation experiments indicated that the nanoparticles exhibited favorable survivability and adhesion to osteoblast cells.

Conclusions

This study successfully developed a method for producing nano-hierarchical morphological hydroxyapatite using glucose 6-phosphate biomolecules as an organic phosphorus source through the pulsed ultrasonochemical process. The n-HA nanoparticles generated displayed exceptional morphology and exhibited favorable survivability and adhesion to osteoblast cells. Therefore, these nanoparticles hold promise for potential applications in biomedical fields, particularly in orthopedics and orthodontics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Akram M, Ahmed R, Shakir I, Ibrahim WAW, Hussain R. Extracting hydroxyapatite and its precursors from natural resources. J Mater Sci. 2014;49:1461–75.

    Article  CAS  Google Scholar 

  2. Jegatheeswaran S, Selvam S, Ramkumar VS, Sundrarajan M. Novel strategy for f-HAp/PVP/Ag nanocomposite synthesis from fluoro based ionic liquid assistance: systematic investigations on its antibacterial and cytotoxicity behaviors. Mater Sci Eng C. 2016;67:8–19.

    Article  CAS  Google Scholar 

  3. John Ł, Janeta M, Szafert S. Designing of macroporous magnetic bioscaffold based on functionalized methacrylate network covered by hydroxyapatites and doped with nano-MgFe2O4 for potential cancer hyperthermia therapy. Mater Sci Eng C. 2017;78:901–11.

    Article  CAS  Google Scholar 

  4. Pu'ad NM, Koshy P, Abdullah H, Idris M, Lee T. Syntheses of hydroxyapatite from natural sources. Heliyon. 2019;5(5):e01588.

    Article  Google Scholar 

  5. Govindaraj D, Pradeepkumar P, Rajan M. Synthesis of morphology tuning multi mineral substituted apatite nanocrystals by novel natural deep eutectic solvents. Mater Discov. 2017;9:11–5.

    Article  Google Scholar 

  6. Yoruç ABH, Aydınoğlu A. The precursors effects on biomimetic hydroxyapatite ceramic powders. Mater Sci Eng C. 2017;75:934–46.

    Article  Google Scholar 

  7. Zhao XY, Zhu YJ, Qi C, Chen F, Lu BQ, Zhao J, Wu J. Hierarchical hollow hydroxyapatite microspheres: microwave-assisted rapid synthesis by using pyridoxal-5′-phosphate as a phosphorus source and application in drug delivery. Chem–Asian J. 2013;8(6):1313–20.

    Article  CAS  PubMed  Google Scholar 

  8. Jeong H-S, Venkatesan J, Kim S-K. Hydroxyapatite-fucoidan nanocomposites for bone tissue engineering. Int J Biol Macromol. 2013;57:138–41.

    Article  CAS  PubMed  Google Scholar 

  9. Zhao X-Y, Zhu Y-J, Chen F, Lu B-Q, Qi C, Zhao J, Wu J. Hydrothermal synthesis of hydroxyapatite nanorods and nanowires using riboflavin-5′-phosphate monosodium salt as a new phosphorus source and their application in protein adsorption. CrystEngComm. 2013;15(39):7926–35.

    Article  CAS  Google Scholar 

  10. Kumar GS, Girija EK, Venkatesh M, Karunakaran G, Kolesnikov E, Kuznetsov D. One step method to synthesize flower-like hydroxyapatite architecture using mussel shell bio-waste as a calcium source. Ceram Int. 2017;43(3):3457–61.

    Article  CAS  Google Scholar 

  11. Zhao J, Zhu Y-J, Cheng G-F, Ruan Y-J, Sun T-W, Chen F, Wu J, Zhao X-Y, Ding G-J. Microwave-assisted hydrothermal rapid synthesis of amorphous calcium phosphate nanoparticles and hydroxyapatite microspheres using cytidine 5′-triphosphate disodium salt as a phosphate source. Mater Lett. 2014;124:208–11.

    Article  CAS  Google Scholar 

  12. Zhu Y-J, Chen F. Microwave-assisted preparation of inorganic nanostructures in liquid phase. Chem Rev. 2014;114(12):6462–555.

    Article  CAS  PubMed  Google Scholar 

  13. Pol VG, Li Y, Dogan F, Secor E, Thackeray MM, Abraham DP. Pulsed sonication for alumina coatings on high-capacity oxides: performance in lithium-ion cells. J Power Sources. 2014;258:46–53.

    Article  CAS  Google Scholar 

  14. Taguchi M, Schwalb N, Rong Y, Vanegas D, Garland N, Tan M, Yamaguchi H, Claussen J, McLamore E. Pulsed: pulsed sonoelectrodeposition of fractal nanoplatinum for enhancing amperometric biosensor performance. Analyst. 2016;141(11):3367–78.

    Article  CAS  PubMed  Google Scholar 

  15. Rousse C, Josse J, Mancier V, Levi S, Gangloff SC, Fricoteaux P. Synthesis of copper–silver bimetallic nanopowders for a biomedical approach; study of their antibacterial properties. RSC Adv. 2016;6(56):50933–40.

    Article  CAS  Google Scholar 

  16. Soltani RDC, Safari M. Periodate-assisted pulsed sonocatalysis of real textile wastewater in the presence of MgO nanoparticles: response surface methodological optimization. Ultrason Sonochem. 2016;32:181–90.

    Article  Google Scholar 

  17. Burrs S, Bhargava M, Sidhu R, Kiernan-Lewis J, Gomes C, Claussen J, McLamore E. A paper based graphene-nanocauliflower hybrid composite for point of care biosensing. Biosens Bioelectron. 2016;85:479–87.

    Article  CAS  PubMed  Google Scholar 

  18. Tian W-N, Braunstein LD, Pang J, Stuhlmeier KM, Xi Q-C, Tian X, Stanton RC. Importance of glucose-6-phosphate dehydrogenase activity for cell growth. J Biol Chem. 1998;273(17):10609–17.

    Article  CAS  PubMed  Google Scholar 

  19. Yu Y-D, Zhu Y-J, Qi C, Wu J. Solvothermal synthesis of hydroxyapatite with various morphologies using trimethyl phosphate as organic phosphorus source. Mater Lett. 2017;193:165–8.

    Article  CAS  Google Scholar 

  20. Filova E, Fojt J, Kryslova M, Moravec H, Joska L, Bacakova L. The diameter of nanotubes formed on Ti-6Al-4V alloy controls the adhesion and differentiation of Saos-2 cells. Int J Nanomedicine. 2015;10:7145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Assis CM, Vercik LC, Santos ML, Fook MV, Guastaldi AC. Comparison of crystallinity between natural hydroxyapatite and synthetic cp-Ti/HA coatings. Mater Res. 2005;8:207–11.

    Article  Google Scholar 

  22. Fowler B, Moreno E, Brown W. Infra-red spectra of hydroxyapatite, octacalcium phosphate and pyrolysed octacalcium phosphate. Arch Oral Biol. 1966;11(5):477–92.

    Article  CAS  PubMed  Google Scholar 

  23. Qi C, Zhu Y-J, Wu C-T, Sun T-W, Jiang Y-Y, Zhang Y-G, Wu J, Chen F. Sonochemical synthesis of hydroxyapatite nanoflowers using creatine phosphate disodium salt as an organic phosphorus source and their application in protein adsorption. RSC Adv. 2016;6(12):9686–92.

    Article  CAS  Google Scholar 

  24. Qi C, Zhu YJ, Chen F. Fructose 1, 6-Bisphosphate Trisodium Salt as A New Phosphorus Source for the Rapid Microwave Synthesis of Porous Calcium–Phosphate Microspheres and their Application in Drug Delivery. Chem–Asian J. 2013;8(1):88–94.

    Article  CAS  PubMed  Google Scholar 

  25. Govindaraj D, Rajan M, Munusamy MA, Higuchi A. Mineral substituted hydroxyapatite coatings deposited on nanoporous TiO 2 modulate the directional growth and activity of osteoblastic cells. RSC Adv. 2015;5(73):58980–8.

    Article  CAS  Google Scholar 

  26. Tas AC. Granules of brushite and octacalcium phosphate from marble. J Am Ceram Soc. 2011;94(11):3722–6.

    Article  CAS  Google Scholar 

  27. Suzuki O, Kamakura S, Katagiri T, Nakamura M, Zhao B, Honda Y, Kamijo R. Bone formation enhanced by implanted octacalcium phosphate involving conversion into Ca-deficient hydroxyapatite. Biomaterials. 2006;27(13):2671–81.

    Article  CAS  PubMed  Google Scholar 

  28. Kłosowski MM, Friederichs RJ, Nichol R, Antolin N, Carzaniga R, Windl W, Best SM, Shefelbine SJ, McComb DW, Porter AE. Probing carbonate in bone forming minerals on the nanometre scale. Acta Biomater. 2015;20:129–39.

    Article  PubMed  Google Scholar 

  29. Milella E, Cosentino F, Licciulli A, Massaro C. Preparation and characterisation of titania/hydroxyapatite composite coatings obtained by sol–gel process. Biomaterials. 2001;22(11):1425–31.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang C-Y, Zhang W, Mao L-B, Zhao Y, Yu S-H. Biomimetic mineralization of zein/calcium phosphate nanocomposite nanofibrous mats for bone tissue scaffolds. CrystEngComm. 2014;16(40):9513–9.

    Article  CAS  Google Scholar 

  31. Suzuki O. Octacalcium phosphate (OCP)-based bone substitute materials. Jpn Dent Sci Rev. 2013;49(2):58–71.

    Article  Google Scholar 

  32. Ma M-G. Hierarchically nanostructured hydroxyapatite: hydrothermal synthesis, morphology control, growth mechanism, and biological activity. Int J Nanomed. 2012;7:1781–91.

    Article  CAS  Google Scholar 

  33. Govindaraj D, Rajan M, Munusamy MA, Balakumaran MD, Kalaichelvan PT. Osteoblast compatibility of minerals substituted hydroxyapatite reinforced poly (sorbitol sebacate adipate) nanocomposites for bone tissue application. RSC Adv. 2015;5(55):44705–13.

    Article  CAS  Google Scholar 

  34. Arellano-Jiménez M, García-García R, Reyes-Gasga J. Synthesis and hydrolysis of octacalcium phosphate and its characterization by electron microscopy and X-ray diffraction. J Phys Chem Solids. 2009;70(2):390–5.

    Article  Google Scholar 

  35. Govindaraj D, Rajan M, Munusamy MA, Alarfaj AA, Kumar SS. Mineral-substituted hydroxyapatite reinforced poly (raffinose-citric acid)–polyethylene glycol nanocomposite enhances osteogenic differentiation and induces ectopic bone formation. New J Chem. 2017;41(8):3036–47.

    Article  CAS  Google Scholar 

  36. Al-Juboori RA, Yusaf T, Aravinthan V, Bowtell L. Investigating natural organic carbon removal and structural alteration induced by pulsed ultrasound. Sci Total Environ. 2016;541:1019–30.

    Article  CAS  PubMed  Google Scholar 

  37. Karthi S, Kumar G, Sardar D, Dannangoda G, Martirosyan K, Girija E. Fluorapatite coated iron oxide nanostructure for biomedical applications. Mater Chem Phys. 2017;193:356–63.

    Article  CAS  Google Scholar 

  38. Lahiri D, Benaduce AP, Kos L, Agarwal A. Quantification of carbon nanotube induced adhesion of osteoblast on hydroxyapatite using nano-scratch technique. Nanotechnology. 2011;22(35):355703.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dawei Wang.

Ethics declarations

Conflict of Interest

The authors of this study did not report any conflicts of interest to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, L., Wang, D. Osteocompatible Zinc-Copper Substituted Hydroxyapatite Reinforced Biocomposites for Bone Tissue Regeneration. J Pharm Innov 19, 26 (2024). https://doi.org/10.1007/s12247-024-09833-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12247-024-09833-x

Keywords

Navigation