Skip to main content

Advertisement

Log in

Design and Development of Fluconazole-Loaded Nanocellulose-Eudragit Vaginal Drug Delivery System

  • Original Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this research work was to evaluate the scaffolds of rice and wheat nanocellulose with Eudragit E100 for vaginal delivery of fluconazole.

Method

The nanocellulose-based scaffolds were fabricated by the lyophilization technique using a two-factor three-level central composite experimental design. The optimal formulation of the fluconazole-loaded Eudragit-coated rice or wheat nanocellulose-based scaffolds comprised of nanocellulose (3.4% w/v or 3.3% w/v) and Eudragit E100 (6.3% w/v or 7.9% w/v), respectively.

Results

The Fourier-transform infrared spectroscopy confirmed the Eudragit coating on nanocellulosic fibers while the thermogravimetric study unveiled the higher thermal stability of coated scaffolds. The diffraction pattern and electron micrographs revealed the amorphous and porous nature of the fabricated scaffolds. The molecular weight of rice and wheat nanocellulose-based scaffolds was determined to be 9.7 × 106 Da and 6.07 × 106 Da, respectively, by the static light scattering. Further, the Eudragit-coated nanocellulose scaffolds show greater swelling (fivefold higher), porosity (> 84%), tensile strength (> 274 MPa), and mucoadhesive strength (> 1940 mN), and less enzymatic degradation rate over the unmodified scaffolds. The optimal batch of Eudragit-coated nanocellulose scaffolds provided a sustained release of 99% of fluconazole over 48 h with 1.12-fold higher ex vivo vaginal permeation over the native scaffolds. In addition, the Eudragit-coated wheat nanocellulose-based scaffolds were found to be antifungal and non-cytotoxic in nature.

Conclusion

The research work demonstrates that fluconazole-loaded Eudragit-coated rice or wheat nanocellulose scaffolds can be utilized as a vaginal drug delivery system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Haldar D, Purkait MK. Micro and nanocrystalline cellulose derivatives of lignocellulosic biomass: a review on synthesis, applications and advancements. Carbohydr Polym. 2020;250:1–16.

    Article  Google Scholar 

  2. Patil TV, Patel DK, Dutta SD, Ganguly K, Santra TS, Lim KT. Nanocellulose, a versatile platform: from the delivery of active molecules to tissue engineering applications. Bioact Mater. 2022;9:566–89.

    CAS  PubMed  Google Scholar 

  3. Elahi N, Mahmoodi A, Mahmoudi N, Zandi N, Simchi A. Processing and properties of nanofibrous bacterial cellulose-containing polymer composites: a review of recent advances for biomedical applications. Polym Rev. 2020;60:144–70.

    Article  Google Scholar 

  4. Trache D, Tarchoun AF, Derradji M, Hamidon TS, Masruchin N, Brosse N, Hussin MH. Nanocellulose: from fundamentals to advanced applications. Front Chem. 2020;8:1–33.

    Article  Google Scholar 

  5. Abral H, Ariksa J, Mahardika M, Handayani D, Aminah I, Sandrawati N, Pratama AB, Fajri N, Sapuan SM, Ilyas RA. Transparent and antimicrobial cellulose film from ginger nanofiber. Food Hydrocoll. 2020;98:1–7.

    Article  Google Scholar 

  6. Xu Y, Li S, Yue X, Lu W. Review of silver nanoparticles (AgNPs)-cellulose antibacterial composites. BioRes. 2018;13:2150–70.

    CAS  Google Scholar 

  7. Pradeep HK, Patel DH, Onkarappa HS, Pratiksha CC, Prasanna GD. Role of nanocellulose in industrial and pharmaceutical sectors — a review. Int J Biol Macromol. 2022;207:1038–47.

    Article  CAS  PubMed  Google Scholar 

  8. Kuhnt T, Camarero-Espinosa S. Additive manufacturing of nanocellulose based scaffolds for tissue engineering: beyond a reinforcement filler. Carbohydr Polym. 2021;252:1–15.

    Article  Google Scholar 

  9. Ko S, Kim H-S, Jo S-C, Cho S-H, Park W-S, Lee S-C. Evaluation of pH sensitive Eudragit E100 microcapsules containing nisin for controlling the ripening of Kimchi. Food Sci Biotechnol. 2005;14:358–62.

    CAS  Google Scholar 

  10. Farooq U, Khan S, Nawaz S, Ranjha NM, Haider MS, Khan MM, Dar E, Nawaz A. Enhanced gastric retention and drug release via development of novel floating microspheres based on Eudragit e100 and polycaprolactone: synthesis and in vitro evaluation. Designed Monomers Polymers. 2017;20:419–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Małolepsza-Jarmołowska K, Kubis AA, Hirnle L. Studies on gynaecological hydrophilic lactic acid preparations. Pharmazie. 2003;58:334–6.

    PubMed  Google Scholar 

  12. Ramyadevi D, Rajan KS, Vedhahari BN, Ruckmani K, Subramanian N. Heterogeneous polymer composite nanoparticles loaded in situ gel for controlled release intra-vaginal therapy of genital herpes. Colloids Surf B Biointerfaces. 2016;146:260–70.

    Article  CAS  PubMed  Google Scholar 

  13. Yoo J-W, Giri N, Lee CH. pH-sensitive Eudragit nanoparticles for mucosal drug delivery. Int J Pharm. 2011;403:262–7.

    Article  CAS  PubMed  Google Scholar 

  14. Guterres S, Frank LA, Sandri G, D’Autilia F, Contri RV, Bonferoni MC, Caramella C, Frank AG, Pohlmann AR. Chitosan gel containing polymeric nanocapsules: a new formulation for vaginal drug delivery. Int J Nanomed. 2014;9:3151–61.

    Article  Google Scholar 

  15. Rimpy AM. Fluconazole-loaded TEOS-modified nanocellulose 3D scaffolds — fabrication, characterization and its application as drug delivery system. J Drug Del Sci Technol. 2022;75:1–18.

    Google Scholar 

  16. Tuğcu-Demiröz F, Saar S, Kara AA, Yildiz A, Tunçel E, Acartürk F. Development and characterization of chitosan nanoparticles loaded nanofiber hybrid system for vaginal controlled release of benzydamine. Eur J Pharm Sci. 2021;161:1–15.

    Article  Google Scholar 

  17. Khan S, Anwar N. Gelatin/carboxymethyl cellulose based stimuli-responsive hydrogels for controlled delivery of 5-fluorouracil, development, in vitro characterization, in vivo safety and bioavailability evaluation. Carbohydr Polym. 2021;257:1–13.

    Article  Google Scholar 

  18. Notario-Pérez F, Galante J, Martín-Illana A, Cazorla-Luna R, Sarmento B, Ruiz-Caro R, das Neves J, Veiga MD. Development of pH-sensitive vaginal films based on methacrylate copolymers for topical HIV-1 pre-exposure prophylaxis. Acta Biomater. 2021;121:316–327.

  19. de Jesús Valle MJ, Coutinho P, Ribeiro MP, Sánchez NA. Lyophilized tablets for focal delivery of fluconazole and itraconazole through vaginal mucosa, rational design and in vitro evaluation. Eur J Pharm Sci. 2018;122:144–51.

    Article  PubMed  Google Scholar 

  20. Cevher E, Açma A, Sinani G, Aksu B, Zloh M, Mülazi moǧlu L. Bioadhesive tablets containing cyclodextrin complex of itraconazole for the treatment of vaginal candidiasis. Int J Biol Macromol. 2014;69:124–136.

  21. Sharma R, Pahwa R, Ahuja M. Iodine-loaded poly(silicic acid) gellan nanocomposite mucoadhesive film for antibacterial application. J Appl Polym Sci. 2021;138:1–13.

    Article  Google Scholar 

  22. Victorelli FD, Calixto GMF, dos Santos KC, Buzzá HH, Chorilli M. Curcumin-loaded polyethyleneimine and chitosan polymer-based mucoadhesive liquid crystalline systems as a potential platform in the treatment of cervical cancer. J Mol Liq. 2021;325:1–13.

    Article  Google Scholar 

  23. Yadav C, Saini A, Maji PK. Energy efficient facile extraction process of cellulose nanofibres and their dimensional characterization using light scattering techniques. Carbohydr Polym. 2017;165:276–84.

    Article  CAS  PubMed  Google Scholar 

  24. Petroudy SRD, Kahagh SA, Vatankhah E. Environmentally friendly superabsorbent fibers based on electrospun cellulose nanofibers extracted from wheat straw. Carbohydr Polym. 2021;251:1–13.

    Google Scholar 

  25. Zulkifli FH, Hussain FSJ, Harun WSW, Yusoff MM. Highly porous of hydroxyethyl cellulose biocomposite scaffolds for tissue engineering. Int J Biol Macromol. 2019;122:562–71.

    Article  CAS  PubMed  Google Scholar 

  26. Zhou L, Cai L, Ruan H, Zhang L, Wang J, Jiang H, Wu Y, Feng S, Chen J. Electrospun chitosan oligosaccharide/polycaprolactone nanofibers loaded with wound-healing compounds of Rutin and Quercetin as antibacterial dressings. Int J Biol Macromol. 2021;183:1145–54.

    Article  CAS  PubMed  Google Scholar 

  27. Zhijiang C, Yi X, Haizheng Y, Jia J, Liu Y. Poly(hydroxybutyrate)/cellulose acetate blend nanofiber scaffolds: preparation, characterization and cytocompatibility. Mater Sci Eng C. 2016;58:757–67.

    Article  Google Scholar 

  28. Zhang S, Hao J, Ding F, Ren X. Nanocatalyst doped bacterial cellulose-based thermosensitive nanogel with biocatalytic function for antibacterial application. Int J Biol Macromol. 2022;195:294–301.

    Article  CAS  PubMed  Google Scholar 

  29. Kathirselvam M, Kumaravel A, Arthanarieswaran VP, Saravanakumar SS. Isolation and characterization of cellulose fibers from Thespesia populnea barks: a study on physicochemical and structural properties. Int J Biol Macromol. 2019;129:396–406.

    Article  CAS  PubMed  Google Scholar 

  30. Asiri A, Saidin S, Sani MH, Al-Ashwal RH. Epidermal and fibroblast growth factors incorporated polyvinyl alcohol electrospun nanofibers as biological dressing scaffold. Sci Rep. 2021;11:1–14.

    Article  Google Scholar 

  31. Erdal NB, Yao JG, Hakkarainen M. Cellulose-derived nanographene oxide surface-functionalized three-dimensional scaffolds with drug delivery capability. Biomacromol. 2019;20:738–49.

    Article  Google Scholar 

  32. Alkhalidi HM, Hosny KM, Rizg WY. Oral gel loaded by fluconazole-sesame oil nanotransfersomes: development, optimization, and assessment of antifungal activity. Pharmaceutics. 2021;13:1–23.

    Google Scholar 

  33. Kode J, Kovvuri J, Nagaraju B, Jadhav S, Barkume M, Sen S, Kasinathan NK, Chaudhari P, Mohanty BS, Gour J, Sigalapalli DK, Kumar CG, Pradhan T, Banerjee M, Kamal A. Synthesis, biological evaluation, and molecular docking analysis of phenstatin based indole linked chalcones as anticancer agents and tubulin polymerization inhibitors. Bioorg Chem. 2020;105:1–16.

    Article  Google Scholar 

  34. Sharma C, Bhardwaj NK. Fabrication of natural-origin antibacterial nanocellulose films using bio-extracts for potential use in biomedical industry. Int J Biol Macromol. 2020;145:914–25.

    Article  CAS  PubMed  Google Scholar 

  35. Yu M, Yuan W, Li D, Schwendeman A, Schwendeman SP. Predicting drug release kinetics from nanocarriers inside dialysis bags. J Control Release. 2019;315:23–30.

    Article  CAS  PubMed  Google Scholar 

  36. Kim Y, Park EJ, Kim T, Na DH. Recent progress in drug release testing methods of biopolymeric particulate system. Pharmaceutics. 2021;13:1–23.

    Article  Google Scholar 

  37. Alkhamis KA, Obaidat AA, Nuseirat AF. Solid-state characterization of fluconazole. Pharm Dev Technol. 2002;7:491–503.

    Article  CAS  PubMed  Google Scholar 

  38. Caira MR, Alkhamis KA, Obaidat RM. Preparation and crystal characterization of a polymorph, a monohydrate, and an ethyl acetate solvate of the antifungal fluconazole. J Pharm Sci. 2004;93:601–11.

    Article  CAS  PubMed  Google Scholar 

  39. Linares V, Yarce CJ, Echeverri JD, Galeano E, Salamanca CH. Relationship between degree of polymeric ionisation and hydrolytic degradation of Eudragit® E polymers under extreme acid conditions. Polymers. 2019;11:1–18.

  40. Prado KS, Spinacé MAS. Isolation and characterization of cellulose nanocrystals from pineapple crown waste and their potential uses. Int J Biol Macromol. 2019;122:410–6.

    Article  CAS  PubMed  Google Scholar 

  41. Qu R, Tang M, Wang Y, Li D, Wang L. TEMPO-oxidized cellulose fibers from wheat straw: effect of ultrasonic pretreatment and concentration on structure and rheological properties of suspensions. Carbohydr Polym. 2021;255:1–9.

    Article  Google Scholar 

  42. Rashid S, Dutta H. Characterization of nanocellulose extracted from short, medium and long grain rice husks. Ind Crops Prod. 2020;154:1–12.

    Article  Google Scholar 

  43. Chen Q, Zheng K, Fan Q, Wang K, Yang H, Jiang J, Liu S. Solvability and thermal response of cellulose with different crystal configurations. Front Eng Manag. 2019;6:62–9.

    Article  Google Scholar 

  44. Fneich F, Ville J, Seantier B, Aubry T. Nanocellulose-based foam morphological, mechanical and thermal properties in relation to hydrogel precursor structure and rheology. Carbohydr Polym. 2021;253:1–6.

    Article  Google Scholar 

  45. Hasan A, Waibhaw G, Tiwari S, Dharmalingam K, Shukla I, Pandey LM. Fabrication and characterization of chitosan, polyvinylpyrrolidone, and cellulose nanowhiskers nanocomposite films for wound healing drug delivery application. J Biomed Mater Res A. 2017;105:2391–404.

    Article  CAS  PubMed  Google Scholar 

  46. Lam NT, Chollakup R, Smitthipong W, Nimchua T, Sukyai P. Utilizing cellulose from sugarcane bagasse mixed with poly(vinyl alcohol) for tissue engineering scaffold fabrication. Ind Crops Prod. 2017;100:183–97.

    Article  CAS  Google Scholar 

  47. Ngwabebhoh FA, Patwa R, Zandraa O, Saha N, Saha P. Preparation and characterization of injectable self-antibacterial gelatin/carrageenan/bacterial cellulose hydrogel scaffolds for wound healing application. J Drug Del Sci Technol. 2021;63:1–12.

    Google Scholar 

  48. Tarrahi R, Khataee A, Karimi A, Golizadeh M, Azar FEF. Development of a cellulose-based scaffold for sustained delivery of curcumin. Int J Biol Macromol. 2021;183:132–44.

    Article  CAS  PubMed  Google Scholar 

  49. Bano S, Negi YS. Studies on cellulose nanocrystals isolated from groundnut shells. Carbohydr Polym. 2017;157:1041–9.

    Article  CAS  PubMed  Google Scholar 

  50. Zhang Y, Wang X, Li K, Zhang Y, Yu X, Wang H, Wu X, Shi Z, Liu L, Zheng W, Cui Z, Xu Y, Li Q. Nanofibrous tissue engineering scaffold with nonlinear elasticity created by controlled curvature and porosity. J Mech Behav Biomed Mater. 2022;126:1–8.

    Article  Google Scholar 

  51. Sultan S, Mathew AP. 3D printed porous cellulose nanocomposite hydrogel scaffolds. J Vis Exp. 2019;2019:1–7.

    Google Scholar 

  52. Gruzevskiy AA. Colonization resistance of vaginal secretion. J Educ Health Sport. 2019;9:583–95.

    Google Scholar 

  53. Adnane M, Meade KG, O’Farrelly C. Cervico-vaginal mucus (CVM) — an accessible source of immunologically informative biomolecules. Vet Res Commun. 2018;42:255–63.

    Article  PubMed  PubMed Central  Google Scholar 

  54. De Seta F, Campisciano G, Zanotta N, Ricci G, Comar M. The vaginal community state types microbiome-immune network as key factor for bacterial vaginosis and aerobic vaginitis. Front Microbiol. 2019;10:1–8.

    Google Scholar 

  55. Hasan A, Waibhaw G, Saxena V, Pandey LM. Nano-biocomposite scaffolds of chitosan, carboxymethyl cellulose and silver nanoparticle modified cellulose nanowhiskers for bone tissue engineering applications. Int J Biol Macromol. 2018;111:923–34.

    Article  CAS  PubMed  Google Scholar 

  56. Xu S, Dong Y, Shi J, Li Z, Che L, Lin Y, Li J, Feng B, Fang Z, Yong Z, Wang J, De Wu. Responses of vaginal microbiota to dietary supplementation with lysozyme and its relationship with rectal microbiota and sow performance from late gestation to early lactation. Animals. 2021;11:1–16.

  57. Thellin O, Zorzi W, Zorzi D, Delvenne P, Heinen E, ElMoualij B, Quatresooz P. Lysozyme as a cotreatment during antibiotics use against vaginal infections: an in vitro study on Gardnerella vaginalis biofilm models. Int Microbiol. 2016;19:101–7.

    CAS  PubMed  Google Scholar 

  58. Moon JY, Lee J, Hwang TI, Park CH, Kim CS. A multifunctional, one-step gas foaming strategy for antimicrobial silver nanoparticle-decorated 3D cellulose nanofiber scaffolds. Carbohydr Polym. 2021;273:1–12.

    Article  Google Scholar 

  59. Kim SE, Tiwari AP. Three dimensional polycaprolactone/cellulose scaffold containing calcium-based particles: a new platform for bone regeneration. Carbohydr Polym. 2020;250:1–12.

    Article  Google Scholar 

  60. Hari BNV, Narayanan N, Dhevedaran K. Efavirenz-Eudragit E-100 nanoparticle-loaded aerosol foam for sustained release: in-vitro and ex-vivo evaluation. Chem Pap. 2015;69:358–67.

    Google Scholar 

  61. Senthilganesh J, Deepak L, Durai R, Hari BNV, Veerappan A, Paramasivam N. Evaluation of lectin nanoscaffold based in-situ gel against vulvovaginal candidiasis causing Candida biofilms using a novel ex-vivo model. J Drug Del Sci Technol. 2022;74:1–10.

    Google Scholar 

  62. Sanz R, Clares B, Mallandrich M, Suñer-Carbó J, Montes MJ, Calpena AC. Development of a mucoadhesive delivery system for control release of doxepin with application in vaginal pain relief associated with gynecological surgery. Int J Pharm. 2018;535:393–401.

    Article  CAS  PubMed  Google Scholar 

  63. Nair AB, Shah J, Jacob S, Al-Dhubiab BE, Patel V, Sreeharsha N, Shinu P. Development of mucoadhesive buccal film for rizatriptan: in vitro and in vivo evaluation. Pharmaceutics. 2021;13:1–16.

    Article  Google Scholar 

  64. Frank LA, Sandri G, D’Autilia F, Contri RV, Bonferoni MC, Caramella C, Frank AG, Pohlmann AR, Guterres SS. Chitosan gel containing polymeric nanocapsules: a new formulation for vaginal drug delivery. Int J Nanomed. 2014;9:3151–61.

    CAS  Google Scholar 

  65. Rençber S, Karavana SY, Yilmaz FF, Eraç B, Nenni M, Özbal S, Pekçetin Ç, Gurer-Orhan H, Hoşgör-Limoncu M, Güneri P, Ertan G. Development, characterization, and in vivo assessment of mucoadhesive nanoparticles containing fluconazole for the local treatment of oral candidiasis. Int J Nanomed. 2016;11:2641–53.

    Article  Google Scholar 

  66. Yurtdas-Kırımlıoglu G, Gorgülü S. Surface modification of PLGA nanoparticles with chitosan or Eudragit® RS100: characterization, prolonged release, cytotoxicity, and enhanced antimicrobial activity. J Drug Del Sci Technol. 2020;61:1–14.

    Google Scholar 

Download references

Acknowledgements

We are thankful to the Coordinator, DST-FIST, Department of Physics, GJUST, Hisar (SR/FST/PSI-089-2005) for providing us the facilities for XRD; Central Instrumentation Laboratory, GJUST, Hisar for the SEM analysis; and ACTREC, Mumbai for the anticancer activity.

Funding

The authors are grateful to the Department of Science and Technology, Ministry of Science and Technology, Government of India for providing the DST-INSPIRE research fellowship to Rimpy (Sanction no.: IF 180776).

Author information

Authors and Affiliations

Authors

Contributions

Rimpy Pahwa: data curation, visualization, methodology, investigation, writing — original draft, validation. Munish Ahuja: writing — review and editing, supervision, conceptualization, project administration, funding acquisition.

Corresponding author

Correspondence to Munish Ahuja.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pahwa, R., Ahuja, M. Design and Development of Fluconazole-Loaded Nanocellulose-Eudragit Vaginal Drug Delivery System. J Pharm Innov 18, 1065–1083 (2023). https://doi.org/10.1007/s12247-022-09705-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-022-09705-2

Keywords

Navigation