Skip to main content

Advertisement

Log in

Surface Functionalization of Piperine-Loaded Liposomes with Sophorolipids Improves Drug Loading and Stability

  • Original Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Purpose

The application of amphiphilic biosurfactants in drug delivery systems has sparked interest in recent years. In this study, piperine-loaded liposomes were modified with the biosurfactant sophorolipids to better stabilize and disperse the liposomal formulation and the properties of the liposomes were evaluated.

Methods

Sophorolipid-modified liposomes were prepared and the particle sizes and entrapment efficiencies (EEs) of piperine were measured. The stability of liposomes was also evaluated in serum, under 4 °C storage and under various NaCl concentrations and pH conditions respectively. The in vitro release profile of piperine was also investigated.

Results

Sophorolipids helped stabilize and disperse liposomes as evidenced by the decreased particle sizes, lowered PDIs, and increased serum stability after the addition. They also elevated the EEs of piperine into liposomes and stabilized piperine-loaded liposomes during 4 °C storage. Under high NaCl concentrations as well as various pH conditions, sophorolipid-modified liposomes showed favorable in vitro stability in terms of particle sizes and EEs. Sophorolipid-functionalized piperine-loaded liposomes also exhibited sustained in vitro drug release profiles.

Conclusion

This preliminary study validated the feasibility of grafting liposomes with amphiphile biosurfactant sophorolipids for formulation stabilization, demonstrating their applicability in improving the liposomal loading of hydrophobic nutraceuticals such as piperine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Md F. Biosurfactant: production and application. J Pet Environ Biotechnol. 2012;3(4):124.

    Article  CAS  Google Scholar 

  2. Rahman PKSM, Gakpe E. Production, characterisation and applications of biosurfactants-review. Biotechnology. 2008.

  3. Gudiña EJ, Rangarajan V, Sen R, Rodrigues LR. Potential therapeutic applications of biosurfactants. Trends Pharmacol Sci. 2013;34(12):667–75.

    Article  PubMed  Google Scholar 

  4. Roy A. Review on the biosurfactants: properties, types and its applications. J Fundam Renew Energy Appl. 2017;8:1–14.

    CAS  Google Scholar 

  5. Roelants S, Solaiman DKY, Ashby RD, Lodens S, Van Renterghem L, Soetaert W. Production and applications of sophorolipids. Biobased Surfactants. 2019:65–119.

  6. K Morya V, Ahn C, Jeon S, Kim E-K. Medicinal and cosmetic potentials of sophorolipids. Mini Rev Med Chem. 2013;13(12):1761–8.

  7. Nguyen TTL, Edelen A, Neighbors B, Sabatini DA. Biocompatible lecithin-based microemulsions with rhamnolipid and sophorolipid biosurfactants: formulation and potential applications. J Colloid Interface Sci. 2010;348(2):498–504.

    Article  CAS  PubMed  Google Scholar 

  8. Ohadi M, Shahravan A, Dehghannoudeh N, Eslaminejad T, Banat IM, Dehghannoudeh G. Potential use of microbial surfactant in microemulsion drug delivery system: a systematic review. Drug Des Dev Ther. 2020;14:541.

    Article  CAS  Google Scholar 

  9. Rajasekar V, Darne P, Prabhune A, Kao RYT, Solomon AP, Ramage G, et al. A curcumin-sophorolipid nanocomplex inhibits Candida albicans filamentation and biofilm development. Colloids Surf, B. 2021;200:111617.

  10. Hussain A, Guo S. NIR-triggered release of DOX from sophorolipid-coated mesoporous carbon nanoparticles with the phase-change material 1-tetradecanol to treat MCF-7/ADR cells. J Mater Chem B. 2019;7(6):974–85.

    Article  CAS  PubMed  Google Scholar 

  11. Peng S, Li Z, Zou L, Liu W, Liu C, McClements DJ. Enhancement of curcumin bioavailability by encapsulation in sophorolipid-coated nanoparticles: an in vitro and in vivo study. J Agric Food Chem. 2018;66(6):1488–97.

    Article  CAS  PubMed  Google Scholar 

  12. Haque F, Sajid M, Cameotra SS, Battacharyya MS. Anti-biofilm activity of a sophorolipid-amphotericin B niosomal formulation against Candida albicans. Biofouling. 2017;33(9):768–79.

    Article  CAS  PubMed  Google Scholar 

  13. Cheng C, Wu Z, McClements DJ, Zou L, Peng S, Zhou W, et al. Improvement on stability, loading capacity and sustained release of rhamnolipids modified curcumin liposomes. Colloids Surf, B. 2019;183:110460.

  14. Müller F, Hönzke S, Luthardt W-O, Wong EL, Unbehauen M, Bauer J, et al. Rhamnolipids form drug-loaded nanoparticles for dermal drug delivery. Eur J Pharm Biopharm. 2017;116:31–7.

    Article  PubMed  Google Scholar 

  15. Lee Y, Lee D, Park E, Jang S-Y, Cheon SY, Han S et al. Rhamnolipid-coated W/O/W double emulsion nanoparticles for efficient delivery of doxorubicin/erlotinib and combination chemotherapy. J Nanobiotechnol. 2021;19(1):1–13.

  16. Yi G, Son J, Yoo J, Park C, Koo H. Rhamnolipid nanoparticles for in vivo drug delivery and photodynamic therapy. Nanomed Nanotechnol Biol Med. 2019;19:12–21.

  17. Borsanyiova M, Patil A, Mukherji R, Prabhune A, Bopegamage S. Biological activity of sophorolipids and their possible use as antiviral agents. Folia Microbiol. 2016;61(1):85–9.

    Article  CAS  Google Scholar 

  18. Tang Y, Ma Q, Du Y, Ren L, Van Zyl LJ, Long X. Efficient purification of sophorolipids via chemical modifications coupled with extractions and their potential applications as antibacterial agents. Sep Purif Technol. 2020;245:116897.

  19. Haq IU, Imran M, Nadeem M, Tufail T, Gondal TA, Mubarak MS. Piperine: a review of its biological effects. Phytother Res. 2021;35(2):680–700.

    Article  CAS  PubMed  Google Scholar 

  20. Smilkov K, Ackova DG, Cvetkovski A, Ruskovska T, Vidovic B, Atalay M. Piperine: old spice and new nutraceutical? Curr Pharm Des. 2019;25(15):1729–39.

    Article  CAS  PubMed  Google Scholar 

  21. Gorgani L, Mohammadi M, Najafpour GD, Nikzad M. Piperine—the bioactive compound of black pepper: from isolation to medicinal formulations. Compr Rev Food Sci Food Saf. 2017;16(1):124–40.

    Article  CAS  PubMed  Google Scholar 

  22. Bhalekar MR, Madgulkar AR, Desale PS, Marium G. Formulation of piperine solid lipid nanoparticles (SLN) for treatment of rheumatoid arthritis. Drug Dev Ind Pharm. 2017;43(6):1003–10.

    Article  CAS  PubMed  Google Scholar 

  23. Ren T, Hu M, Cheng Y, Shek TL, Xiao M, Ho NJ, et al. Piperine-loaded nanoparticles with enhanced dissolution and oral bioavailability for epilepsy control. Eur J Pharm Sci. 2019;137:104988.

  24. Zhang W, Zheng Q, Song M, Xiao J, Cao Y, Huang Q, et al. A review on the bioavailability, bio-efficacies and novel delivery systems for piperine. Food Funct. 2021;12(19):8867–81.

    Article  CAS  PubMed  Google Scholar 

  25. Pentak D. In vitro spectroscopic study of piperine-encapsulated nanosize liposomes. Eur Biophys J. 2016;45(2):175–86.

    Article  CAS  PubMed  Google Scholar 

  26. Burande AS, Viswanadh MK, Jha A, Mehata AK, Shaik A, Agrawal N, et al. EGFR targeted paclitaxel and piperine co-loaded liposomes for the treatment of triple negative breast cancer. AAPS PharmSciTech. 2020;21:1–12.

    Google Scholar 

  27. Zhang Q, Tang J, Fu L, Ran R, Liu Y, Yuan M, et al. A pH-responsive α-helical cell penetrating peptide-mediated liposomal delivery system. Biomaterials. 2013;34(32):7980–93.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang Q, Ran R, Zhang L, Liu Y, Mei L, Zhang Z, et al. Simultaneous delivery of therapeutic antagomirs with paclitaxel for the management of metastatic tumors by a pH-responsive anti-microbial peptide-mediated liposomal delivery system. J Control Release. 2015;197:208–18.

    Article  CAS  PubMed  Google Scholar 

  29. Du S, Deng Y. Studies on the encapsulation of oxymatrine into liposomes by ethanol injection and pH gradient method. Drug Dev Ind Pharm. 2006;32(7):791–7.

    Article  CAS  PubMed  Google Scholar 

  30. Cui J, Li C, Deng Y, Wang Y, Wang W. Freeze-drying of liposomes using tertiary butyl alcohol/water cosolvent systems. Int J Pharm. 2006;312(1–2):131–6.

    Article  CAS  PubMed  Google Scholar 

  31. Niidome T, Yamagata M, Okamoto Y, Akiyama Y, Takahashi H, Kawano T, et al. PEG-modified gold nanorods with a stealth character for in vivo applications. J Control Release. 2006;114(3):343–7.

    Article  CAS  PubMed  Google Scholar 

  32. Li H, Guo W, Ma X-J, Li J-S, Song X. In vitro and in vivo anticancer activity of sophorolipids to human cervical cancer. Appl Biochem Biotechnol. 2017;181(4):1372–87.

  33. Miceli RT, Corr DT, Barroso M, Dogra N, Gross RA. Sophorolipids: anti-cancer activities and mechanisms. Bioorg Med Chem. 2022;65:116787. https://doi.org/10.1016/j.bmc.2022.116787.

  34. Dima C, Assadpour E, Dima S, Jafari SM. Bioavailability of nutraceuticals: role of the food matrix, processing conditions, the gastrointestinal tract, and nanodelivery systems. Compr Rev Food Sci Food Saf. 2020;19(3):954–94.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation for Young Scientists of China (Grant No. 81903549) and the Science and Technology Research Program of Chongqing Municipal Education Commission (Grant Nos. KJQN202200451 and KJQN202000407).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qianyu Zhang.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Zhang, Q. Surface Functionalization of Piperine-Loaded Liposomes with Sophorolipids Improves Drug Loading and Stability. J Pharm Innov 18, 747–755 (2023). https://doi.org/10.1007/s12247-022-09687-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-022-09687-1

Keywords

Navigation