Skip to main content

Advertisement

Log in

Nanostructured Lipid Carriers (NLCs) of Lumefantrine with Enhanced Permeation

  • Original Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Purpose

Lumefantrine (LF) is an antimalarial agent with low water solubility and inconsistent oral bioavailability (4–11%), which limits its therapeutic potential. Hence, this research aimed to design nanostructured lipid carriers (NLCs) for LF to improve its oral administration.

Methods

LF-NLCs were formulated using the hot emulsification-probe sonication method. Solubility and molecular interactions studies were performed for the selection of appropriate formulation excipients. Various critical formulation and process variables were optimized during this process. The optimized LF-NLC was then evaluated for various physicochemical properties. Ex vivo gut permeation was done to analyze LF-NLC permeation across the gut, and in vitro drug release was performed to understand its release behavior.

Results

Particle size, polydispersity index (PDI), zeta potential, and % encapsulation efficiency of the optimized formulation were found to be 78.85 ± 2.55 nm, 0.255 ± 0.03, -8.25 ± 2.29 mV, and 74.32 ± 1.63%, respectively. Transmission electron microscopy revealed the particulate nature and spherical shape of LF-NLCs. The loss of sharp endothermic peak in DSC and reduced crystallinity in XRD indicated the amorphization of encapsulated drug. The in vitro drug release study showed sustained release of LF from NLC. Ex vivo gut permeation exhibited an almost 3.5-fold increase in permeation of NLCs over plain drug suspension.

Conclusion

According to the above findings, NLC could be a promising approach for the oral delivery of LF and drugs with similar properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gahoi S, Jain GK, Tripathi R, Pandey SK, Anwar M, Warsi MH, et al. Enhanced antimalarial activity of lumefantrine nanopowder prepared by wet-milling DYNO MILL technique. Colloids Surfaces B Biointerfaces. 2012;95:16–22.

    Article  CAS  Google Scholar 

  2. Merisko-Liversidge EM, Liversidge GG. Drug nanoparticles: formulating poorly water-soluble compounds. Toxicol Pathol. 2008;36:43–8.

    Article  CAS  Google Scholar 

  3. Savjani KT, Gajjar AK, Savjani JK. Drug solubility: importance and enhancement techniques. ISRN Pharm Hindawi Limited. 2012;2012:1–10.

    Google Scholar 

  4. Lindenberg M, Kopp S, Dressman JB. Classification of orally administered drugs on the World Health Organization Model list of Essential Medicines according to the biopharmaceutics classification system. Eur J Pharm Biopharm Elsevier. 2004;58:265–78.

    Article  Google Scholar 

  5. Patel K, Sarma V, Vavia P. Design and evaluation of Lumefantrine – oleic acid self nanoemulsifying ionic complex for enhanced dissolution. DARU J Pharm Sci. 2013;21:27.

    Article  CAS  Google Scholar 

  6. Lumefantrine: uses, interactions, mechanism of action | DrugBank Online [Internet]. [cited 2021 Sep 11]. Available from: https://go.drugbank.com/drugs/DB06708.

  7. Wernsdorfer W, Landgraf B, Kilimali V, Wernsdorfer G. Activity of benflumetol and its enantiomers in fresh isolates of Plasmodium falciparum from East Africa. Acta Trop. 1998;70:9–15.

    Article  CAS  Google Scholar 

  8. Murambiwa P, Masola B, Govender T, Mukaratirwa S, Musabayane CT. Anti-malarial drug formulations and novel delivery systems: a review. Acta Trop. 2011;118:71–9.

    Article  CAS  Google Scholar 

  9. van Vugt M, Brockman A, Gemperli B, Luxemburger C, Gathmann I, Royce C, et al. Randomized comparison of artemether-benflumetol and artesunate-mefloquine in treatment of multidrug resistant falciparum malaria. Antimicrob Agents Chemother. American Society for Microbiology Journals. 1998;42:135–9.

  10. Wahajuddin, Raju KSR, Singh SP, Taneja I. Investigation of the functional role of P-glycoprotein in limiting the oral bioavailability of lumefantrine. Antimicrob Agents Chemother. American Society for Microbiology (ASM). 2014;58:489–94.

  11. Ezzet F, van Vugt M, Nosten F, Looareesuwan S, White NJ. Pharmacokinetics and pharmacodynamics of lumefantrine (benflumetol) in acute falciparum malaria. Antimicrob Agents Chemother. 2000;44:697–704.

    Article  CAS  Google Scholar 

  12. Patil S, Suryavanshi S, Pathak S, Sharma S, Patravale V. Evaluation of novel lipid based formulation of β-artemether and lumefantrine in murine malaria model. Int J Pharm. 2013;455:229–34.

    Article  CAS  Google Scholar 

  13. Fule R, Meer T, Sav A, Amin P. Solubility and dissolution rate enhancement of lumefantrine using hot melt extrusion technology with physicochemical characterisation. J Pharm Investig. 2013;43:305–21.

    Article  CAS  Google Scholar 

  14. Shah R, Soni T, Shah U, Suhagia BN, Patel MN, Patel T, et al. Formulation development and characterization of lumefantrine nanosuspension for enhanced antimalarial activity. J Biomater Sci Polym Ed. Taylor & Francis. 2021;32:833–57.

  15. Trasi NS, Bhujbal SV, Zemlyanov DY, Zhou QT, Taylor LS. Physical stability and release properties of lumefantrine amorphous solid dispersion granules prepared by a simple solvent evaporation approach. Int J Pharm: X. Elsevier. 2020;2:100052.

  16. Hiew TN, Zemlyanov DY, Taylor LS. Balancing solid-state stability and dissolution performance of lumefantrine amorphous solid dispersions: the role of polymer choice and drug–polymer interactions. Mol Pharm. American Chemical Society. 2021;acs.molpharmaceut.1c00481.

  17. Tay E, Nguyen T-H, Ford L, Williams HD, Benameur H, Scammells PJ, et al. Ionic liquid forms of the antimalarial lumefantrine in combination with LFCS type IIIB lipid-based formulations preferentially increase lipid solubility, in vitro solubilization behavior and in vivo exposure. Pharmaceutics. Multidisciplinary Digital Publishing Institute. 2019;12:17.

  18. Akpa PA, Ugwuoke JA, Attama AA, Ugwu CN, Ezeibe EN, Momoh MA, et al. Improved antimalarial activity of caprol-based nanostructured lipid carriers encapsulating artemether-lumefantrine for oral administration. Afr Health Sci. Makerere University, Medical School. 2020;20:1679–97.

  19. Pawar S, Shende P. Dual drug delivery of cyclodextrin cross-linked artemether and lumefantrine nanosponges for synergistic action using 23 full factorial designs. Colloids Surfaces A Physicochem Eng Asp. Elsevier. 2020;602:125049.

  20. Byakika-Kibwika P, Lamorde M, Mayanja-Kizza H, Khoo S, Merry C, Van geertruyden J-P. Artemether-lumefantrine combination therapy for treatment of uncomplicated malaria: the potential for complex interactions with antiretroviral drugs in HIV-infected individuals. Malar Res Treat. Hindawi. 2011;2011:1–5.

  21. Kumbhar DD, Pokharkar VB. Engineering of a nanostructured lipid carrier for the poorly water-soluble drug, bicalutamide: physicochemical investigations. Colloids Surfaces A Physicochem Eng Asp. 2013;416:32–42.

    Article  Google Scholar 

  22. Müller RH, Radtke M, Wissing SA. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev. 2002;54:S131–55.

    Article  Google Scholar 

  23. Shevalkar G, Vavia P. Solidified nanostructured lipid carrier (S-NLC) for enhancing the oral bioavailability of ezetimibe. J Drug Deliv Sci Technol. Elsevier. 2019;53:101211.

  24. Aditya NP, Patankar S, Madhusudhan B, Murthy RSR, Souto EB. Arthemeter-loaded lipid nanoparticles produced by modified thin-film hydration: pharmacokinetics, toxicological and in vivo anti-malarial activity. Eur J Pharm Sci. 2010;40:448–55.

    Article  CAS  Google Scholar 

  25. Parashar D, Aditya NP, Murthy RSR. Development of artemether and lumefantrine co-loaded nanostructured lipid carriers: physicochemical characterization and in vivo antimalarial activity. Drug Deliv. 2016;23:123–9.

  26. Neupane YR, Sabir MD, Ahmad N, Ali M, Kohli K. Lipid drug conjugate nanoparticle as a novel lipid nanocarrier for the oral delivery of decitabine: ex vivo gut permeation studies. Nanotechnology. 2013;24:1–11.

    Article  Google Scholar 

  27. Neupane YR, Srivastava M, Ahmad N, Kumar N, Bhatnagar A, Kohli K. Lipid based nanocarrier system for the potential oral delivery of decitabine: formulation design, characterization, ex vivo, and in vivo assessment. Int J Pharm. Elsevier BV. 2014;477:601–12.

  28. Perkins EG. Nutritional and chemical changes occurring in heated fats: A review. Food Technol. 1960;14:508–14.

    CAS  Google Scholar 

  29. Schultz HW. Symposium on foods: lipids and their oxidation. Symp Foods Lipids Their Oxid 1961 Oregon State Univ. Avi Pub Co.; Westport, Conn., Avi Pub Co., 1962;1962.

  30. Stella V, Haslam J, Yata N, Okada H, Lindenbaum S, Higuchi T. Enhancement of bioavailability of a hydrophobic amine antimalarial by formulation with oleic acid in a soft gelatin capsule. J Pharm Sci. 1978;67:1375–7.

    Article  CAS  Google Scholar 

  31. Deli MA. Potential use of tight junction modulators to reversibly open membranous barriers and improve drug delivery. Biochim Biophys Acta - Biomembr Elsevier. 2009;1788:892–910.

    Article  CAS  Google Scholar 

  32. Trotta M, Debernardi F, Caputo O. Preparation of solid lipid nanoparticles by a solvent emulsification–diffusion technique. Int J Pharm Elsevier. 2003;257:153–60.

    Article  CAS  Google Scholar 

  33. Pizzol C, Filippin-Monteiro F, Restrepo J, Pittella F, Silva A, Alves de Souza P, et al. Influence of surfactant and lipid type on the physicochemical properties and biocompatibility of solid lipid nanoparticles. Int J Environ Res Public Health. 2014;11:8581–96.

  34. Pouton CW, Porter CJH. Formulation of lipid-based delivery systems for oral administration: Materials, methods and strategies. Adv Drug Deliv Rev. 2008;60:625–37.

    Article  CAS  Google Scholar 

  35. Essa E. Effect of formulation and processing variables on the particle size of sorbitan monopalmitate niosomes. Asian J Pharm. 2010;4:227–33.

    Article  CAS  Google Scholar 

  36. Svilenov H, Tzachev C. Solid lipid nanoparticles - a promising drug delivery system. Nanomedicine. One Central Press Manchester. 2014. p. 187–237.

  37. Verheyen S, Augustijns P, Kinget R, Van den Mooter G. Determination of partial solubility parameters of five benzodiazepines in individual solvents. Int J Pharm. 2001;228:199–207.

    Article  CAS  Google Scholar 

  38. Forster A, Hempenstall J, Tucker I, Rades T. Selection of excipients for melt extrusion with two poorly water-soluble drugs by solubility parameter calculation and thermal analysis. Int J Pharm Elsevier. 2001;226:147–61.

    Article  CAS  Google Scholar 

  39. Bordes C, Fréville V, Ruffin E, Marote P, Gauvrit JY, Briançon S, et al. Determination of poly(ɛ-caprolactone) solubility parameters: application to solvent substitution in a microencapsulation process. Int J Pharm. 2010;383:236–43.

    Article  CAS  Google Scholar 

  40. Das S, Chaudhury A. Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. AAPS PharmSciTech. 2011;12:62–76.

    Article  CAS  Google Scholar 

  41. Freitas C, Müller RH. Effect of light and temperature on zeta potential and physical stability in solid lipid nanoparticle (SLNTM) dispersions. Int J Pharm Elsevier. 1998;168:221–9.

    Article  CAS  Google Scholar 

  42. Schwarz C. Solid lipid nanoparticles (SLN) for controlled drug delivery II. drug incorporation and physicochemical characterization. J Microencapsul. Taylor & Francis. 1999;16:205–13.

  43. Taylor LS, York P. Characterization of the phase transitions of trehalose dihydrate on heating and subsequent dehydration. J Pharm Sci. 1998;87:347–55.

    Article  CAS  Google Scholar 

  44. Ortiz AC, Yañez O, Salas-Huenuleo E, Morales JO. Development of a nanostructured lipid carrier (NLC) by a low-energy method, comparison of release kinetics and molecular dynamics simulation. Pharmaceutics. 2021;13.

  45. Singh A, Neupane YR, Mangla B, Kohli K. Nanostructured lipid carriers for oral bioavailability enhancement of exemestane: formulation design, in vitro, ex vivo, and in vivo studies. J Pharm Sci Elsevier Ltd. 2019;108:3382–95.

    CAS  Google Scholar 

  46. Wu W, Wang Y, Que L. Enhanced bioavailability of silymarin by self-microemulsifying drug delivery system. Eur J Pharm Biopharm. 2006;63:288–94.

    Article  CAS  Google Scholar 

  47. Sha X, Yan G, Wu Y, Li J, Fang X. Effect of self-microemulsifying drug delivery systems containing Labrasol on tight junctions in Caco-2 cells. Eur J Pharm Sci. 2005;24:477–86.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their sincere gratitude towards the All India Council for Technical Education (AICTE-NAFETIC) to offer research facilities. Authors are also thankful to Gattefosse, India, Mohini Organics Pvt. Ltd. India, Abitec Corporation, India, and BASF, India, for providing gift samples of various excipients.

Funding

This research is financially supported by the University Grants Commission of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradeep Vavia.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shevalkar, G., Pawar, M. & Vavia, P. Nanostructured Lipid Carriers (NLCs) of Lumefantrine with Enhanced Permeation. J Pharm Innov 17, 1221–1234 (2022). https://doi.org/10.1007/s12247-021-09590-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-021-09590-1

Keywords

Navigation