Skip to main content

Advertisement

Log in

The Effect of Adding PVP to the Binary Solid Dispersion (Indomethacin: Kaolin) on the Formation of Physically Stable Amorphous Drug

  • Original Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Purpose

In this work, we investigate the effect of adding polyvinylpyrrolidone (PVP K30) to the binary solid dispersion (indomethacin/kaolin) on the formation of physically stable amorphous drug. This aims to profit more effectively from the therapeutic effect of kaolin in the solid dosage forms of indomethacin.

Methods

Binary mixtures (indomethacin/kaolin) were ball milled at room temperature (≈ 25 °C) in presence of PVP K30 at different weight ratios (w/w). The characterization of the obtained materials was carried out using X-ray diffraction (XRD), infrared spectroscopy (FTIR), scanning electronic microscopy (SEM), high-performance liquid chromatography (HPLC), differential scanning calorimetry (DSC), and 13C MAS NMR spectroscopy.

Results

Results have shown that indomethacin (IND) interacted with kaolin and PVP K30 in solid state via hydrogen bonds without any polymorphic transformations or chemical degradation. The PVP seems to play a role of linker between drug and kaolin leading to physical stability enhancement of amorphous IND even under high stress conditions (RH = 75% and T = 40 °C for 3 months). Such ternary system (IND/kaolin/PVP) has shown a considerable improvement of drug solubility at T = 37 ± 0.5 °C and pH = 7.0 compared to the binary solid dispersion (IND/kaolin).

Conclusions

The addition of PVP to the solid dispersion (IND/kaolin) was advantageous not only in terms of physical stabilization of the amorphous IND but also made it possible to overcome the solubility challenges associated with the presence of kaolin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Knapik-Kowalczuk J, Tu W, Chmiel K, Rams-Baron M, Paluch M. Co-Stabilization of amorphous pharmaceuticals—the case of nifedipine and nimodipine. Mol Pharm. 2018;15(6):2455–65.

    Article  CAS  Google Scholar 

  2. Karagianni A, Kachrimanis K, Nikolakakis I. Co-amorphous solid dispersions for solubility and absorption improvement of drugs: composition, preparation, characterization and formulations for oral delivery. Pharmaceutics. 2018;10(3):98.

    Article  CAS  Google Scholar 

  3. Lucas S. The pharmacology of indomethacin. J Headache Pain. 2016;56(2):436–46.

    Article  Google Scholar 

  4. El-Badry M, Fetih G, Fathy M. Improvement of solubility and dissolution rate of indomethacin by solid dispersions in Gelucire 50/13 and PEG4000. Saudi Pharm J. 2009;17(3):217–25.

    Article  Google Scholar 

  5. Takeuchi H, Nagira S, Yamamoto H, Kawashima Y. Solid dispersion particles of amorphous indomethacin with fine porous silica particles by using spray-drying method. Int J Pharm. 2005;293(1–2):155–64.

    Article  CAS  Google Scholar 

  6. Fini A, Cavallari C, Ospitali F. Raman and thermal analysis of indomethacin/PVP solid dispersion enteric microparticles. Eur J Pharm Biopharm. 2008;70(1):409–20.

    Article  CAS  Google Scholar 

  7. Awad ME, López-Galindo A, Setti M, El-Rahmany MM, Iborra CV. Kaolinite in pharmaceutics and biomedicine. Int J Pharm. 2017;533(1):34–48.

    Article  CAS  Google Scholar 

  8. Carretero MI. Clay minerals and their beneficial effects upon human health. A review Appl Clay Sci. 2002;21(3–4):155–63.

    Article  CAS  Google Scholar 

  9. Mallick S, Pattnaik S, Swain K, De PK, Saha A, Ghoshal G, Mondal A. Formation of physically stable amorphous phase of ibuprofen by solid state milling with kaolin. Eur J Pharm Biopharm. 2008;68(2):346–51.

    Article  CAS  Google Scholar 

  10. Bahl D, Hudak J, Bogner RH. Comparison of the ability of various pharmaceutical silicates to amorphize and enhance dissolution of indomethacin upon co-grinding. Pharm Dev Technol. 2008;13(3):255–69.

    Article  CAS  Google Scholar 

  11. Onyekweli AO, Usifoh CO, Okunrobo LO, Zuofa JD. Adsorptive property of kaolin in some drug formulations. Trop J Pharm Res. 2003;2(1):155–9.

    Article  Google Scholar 

  12. Hassan S, Ibrahim J. Adsorption of some drugs onto surface of Iraqi kaolin clay. Pak J Chem. 2011;1(3):132–7.

    Article  Google Scholar 

  13. Aleanizy FS, Alqahtani F, Al Gohary O, El Tahir E, Al SR. Determination and characterization of metronidazole–kaolin interaction. Saudi Pharm J. 2015;23(2):167–76.

    Article  Google Scholar 

  14. Mura P, Maestrelli F, Cirri M. Ternary systems of naproxen with hydroxypropyl-β-cyclodextrin and amino acids. Int J Pharm. 2003;260(2):293–302.

    Article  CAS  Google Scholar 

  15. Viseras C, Aguzzi C, Cerezo P, Bedmar MC. Biopolymer–clay nanocomposites for controlled drug delivery. Mater Sci Technol. 2008;24(9):1020–6.

    Article  CAS  Google Scholar 

  16. Giri TK, Badwaik H, Alexander A, Tripathi DK. Solubility enhancement of ibuprofen in the presence of hydrophilic polymer and surfactant. Int J Appl Biol Pharm Tech. 2010;1(2):793–800.

    Google Scholar 

  17. Bejaoui M, Galai H, Amara AB, Rhaiem HB. Formation of water soluble and stable amorphous ternary system: ibuprofen/β-cyclodextrin/PVP. Glass Phys Chem. 2019;45(6):580–8.

    Article  Google Scholar 

  18. Watanabe T, Ohno I, Wakiyama N, Kusai A, Senna M. Stabilization of amorphous indomethacin by co-grinding in a ternary mixture. Int J Pharm. 2002;241(1):103–11.

    Article  CAS  Google Scholar 

  19. Prasad D, Chauhan H, Atef E. Amorphous stabilization and dissolution enhancement of amorphous ternary solid dispersions: combination of polymers showing drug–polymer interaction for synergistic effects. J Pharm Sci. 2014;103(11):3511–23.

    Article  CAS  Google Scholar 

  20. O’brien M, McCauley J, Cohen E. Analytical profiles of drug substances. Indomethacin. San Diego: Academic Press Inc. 1984:211–38.

  21. Desprez S, Descamps M. Transformations of glassy indomethacin induced by ball-milling. J Non Cryst Solids. 2006;352(42–49):4480–5.

    Article  CAS  Google Scholar 

  22. Gupta MK, Vanwert A, Bogner RH. Formation of physically stable amorphous drugs by milling with Neusilin. J Pharm Sci. 2003;92(3):536–51.

    Article  CAS  Google Scholar 

  23. Otsuka M, Matsumoto T, Kaneniwa N. Effect of environmental temperature on polymorphic solid-state transformation of indomethacin during grinding. Chem Pharm Bull. 1986;34(4):1784–93.

    Article  CAS  Google Scholar 

  24. Bhugra C, Shmeis R, Krill SL, Pikal MJ. Prediction of onset of crystallization from experimental relaxation times. II. Comparison between predicted and experimental onset times. J Pharm Sci. 2008; 97(1):455–72.

  25. Imaizumi H, Nambu N, Nagai T. Stability and several physical properties of amorphous and crystalline forms of indomethacin. Chem Pharm Bull. 1980;28(9):2565–9.

    Article  CAS  Google Scholar 

  26. Tong P, Taylor LS, Zografi G. Influence of alkali metal counterions on the glass transition temperature of amorphous indomethacin salts. Pharm Res. 2002;19(5):649–54.

    Article  CAS  Google Scholar 

  27. Adrjanowicz K, Kaminski K, Grzybowska K, Hawelek L, Paluch M, Gruszka I, Zakowiecki D, Sawicki W, Lepek P, Kamysz W, Guzik L. Effect of cryogrinding on chemical stability of the sparingly water-soluble drug furosemide. Pharm Res. 2011;28(12):3220–36.

    Article  CAS  Google Scholar 

  28. Masuda K, Tabata S, Kono H, Sakata Y, Hayase T, Yonemochi E, Terada K. Solid-state 13C NMR study of indomethacin polymorphism. Int J Pharm. 2006;318(1–2):146–53.

    Article  CAS  Google Scholar 

  29. Watanabe T, Wakiyama N, Usui F, Ikeda M, Isobe T, Senna M. Stability of amorphous indomethacin compounded with silica. Int J Pharm. 2001;226(1–2):81–91.

    Article  CAS  Google Scholar 

  30. Yuan X, Xiang TX, Anderson BD, Munson EJ. Hydrogen bonding interactions in amorphous indomethacin and its amorphous solid dispersions with poly (vinylpyrrolidone) and poly (vinylpyrrolidone-co-vinyl acetate) studied using 13C solid-state NMR. Mol Pharm. 2015;12(12):4518–28.

    Article  CAS  Google Scholar 

  31. Gupta P, Thilagavathi R, Chakraborti AK, Bansal AK. Role of molecular interaction in stability of celecoxib− PVP amorphous systems. Mol Pharm. 2005;2(5):384–91.

    Article  CAS  Google Scholar 

  32. Khougaz K, Clas SD. Crystallization inhibition in solid dispersions of MK-0591 and poly (vinylpyrrolidone) polymers. J Pharm Sci. 2000;89(10):1325–34.

    Article  CAS  Google Scholar 

  33. Hancock BC, Zografi G. The relationship between the glass transition temperature and the water content of amorphous pharmaceutical solids. Pharm Res. 1994;11(4):471–7.

    Article  CAS  Google Scholar 

  34. Xie T, Taylor LS. Effect of temperature and moisture on the physical stability of binary and ternary amorphous solid dispersions of celecoxib. J Pharm Sci. 2017;106(1):100–10.

    Article  CAS  Google Scholar 

  35. Li Y, Rantanen J, Yang M, Bohr A. Molecular structure and impact of amorphization strategies on intrinsic dissolution of spray dried indomethacin. Eur J Pharm Sci. 2019;129:1–9.

    Article  Google Scholar 

  36. Gupta P, Kakumanu VK, Bansal AK. Stability and solubility of celecoxib-PVP amorphous dispersions: a molecular perspective. Pharm Res. 2004;21(10):1762–9.

    Article  CAS  Google Scholar 

  37. Zhang M, Suo Z, Peng X, Gan N, Zhao L, Tang P, Wei X, Li H. Microcrystalline cellulose as an effective crystal growth inhibitor for the ternary Ibrutinib formulation. Carbohydr Polym. 2020;229:115476.

    Article  CAS  Google Scholar 

  38. Ding X, Zheng M, Lu J, Zhu X. Preparation and evaluation of binary and ternary inclusion complexes of fenofibrate/hydroxypropyl-β-cyclodextrin. J Incl Phenom Macrocycl Chem. 2018;91:17–24.

    Article  CAS  Google Scholar 

  39. Maggi L, Canobbio A, Bruni G, Musitelli G, Conte U. Improvement of the dissolution behavior of gliclazide, a slightly soluble drug, using solid dispersions. J Drug Deliv Sci Technol. 2015;26:17–23.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Pr. Abdessalem Ben Haj Amara (Faculty of sciences of Bizerte, Tunisia) for his considerable inputs and helpful discussions. On the other hand, the authors confirmed that this research work did not receive any specific funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marouene Bejaoui.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bejaoui, M., Kalfat, R. & Galai, H. The Effect of Adding PVP to the Binary Solid Dispersion (Indomethacin: Kaolin) on the Formation of Physically Stable Amorphous Drug. J Pharm Innov 17, 736–746 (2022). https://doi.org/10.1007/s12247-021-09553-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-021-09553-6

Keywords

Navigation