Skip to main content
Log in

Effect of Surfactants on the Melt Viscosity and Extent of Drug Embedment of Paraffin Wax Blends in Spray Congealing

  • Original Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Purpose

Being hydrophobic, paraffin wax is potentially useful for developing taste-masked or sustained release drug formulations. However, its high hydrophobicity also makes it challenging to achieve good embedment of a hydrophilic drug (e.g. paracetamol) due to the significant interfacial tension experienced. While spray congealing is an efficient technique of producing microparticles for pharmaceutical applications, there has been limited investigation on the use of paraffin wax in this technique.

Methods

A rapid method based on microscopic assessment was developed to screen paraffin wax blends containing surfactants for good extent of drug embedment. The rheological properties of the molten blends were investigated. Suitable blends were spray-congealed and the products characterised. Statistical analysis of the data and drug release modelling were carried out.

Results

Drug-loaded paraffin wax was too viscous for spray congealing. The addition of surfactants decreased the melt viscosity and improved sprayability and microparticle yield. The microparticles showed high paracetamol encapsulation efficiency, with drug particles well-embedded in some formulations. The drug release was effected through diffusion and erosion of the matrix material.

Conclusion

The use of surfactants allowed successful embedment of paracetamol within spray-congealed microparticles, enabling taste-masking and sustained release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Sullivan SD. Noncompliance with medication regimens and subsequent hospitalization: a literature analysis and cost of hospitalization estimate. J Res Pharm Econ. 1990;2:19–33.

    Google Scholar 

  2. Ley P. Communicating with patients : improving communication, satisfaction, and compliance. London; New York: Croom Helm; 1988.

    Google Scholar 

  3. Jimmy B, Jose J. Patient medication adherence: measures in daily practice. Oman Med J. 2011;26(3):155–9. https://doi.org/10.5001/omj.2011.38.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Arima H, Higashi T, Motoyama K. Improvement of the bitter taste of drugs by complexation with cyclodextrins: applications, evaluations and mechanisms. Ther Deliv. 2012;3(5):633–44.

    Article  CAS  Google Scholar 

  5. Andrade C. Sustained-release, extended-release, and other time-release formulations in neuropsychiatry. J Clin Psych. 2015;76(8):995–9.

    Article  Google Scholar 

  6. Jantzen GM, Robinson JR. Sustained and controlled release drug delivery systems. In: Banker GS, Rhodes CT, editors. Modern pharmaceutics. New York: Dekker; 1996.

    Google Scholar 

  7. Cohen D, Loonen AJM. Are immediate- and extended-release drugs interchangeable? Acta Psychiatr Scand. 2013;127(1):78–80. https://doi.org/10.1111/acps.12015.

    Article  PubMed  Google Scholar 

  8. Ilić I, Dreu R, Burjak M, Homar M, Kerč J, Srčič S. Microparticle size control and glimepiride microencapsulation using spray congealing technology. Int J Pharm. 2009;381(2):176–83. https://doi.org/10.1016/j.ijpharm.2009.05.011.

    Article  CAS  PubMed  Google Scholar 

  9. Passerini N, Perissutti B, Albertini B, Franceschinis E, Lenaz D, Hasa D, et al. A new approach to enhance oral bioavailability of Silybum Marianum dry extract: association of mechanochemical activation and spray congealing. Phytomedicine. 2012;19(2):160–8. https://doi.org/10.1016/j.phymed.2011.06.027.

    Article  CAS  PubMed  Google Scholar 

  10. PCH W, PWS H, Chan LW. Spray congealing as a microencapsulation technique to develop modified-release ibuprofen solid lipid microparticles: the effect of matrix type, polymeric additives and drug–matrix miscibility. J Microencapsul. 2015;32(8):725–36. https://doi.org/10.3109/02652048.2015.1073387An excellent research article that investigated drug release modification by encapsulation within lipid-based matrix materials (cetyl alcohol, stearic acid and glyceryl dibehenate) using spray congealing. The effect of polymeric additives as release-modifying agents was evaluated.

    Article  CAS  Google Scholar 

  11. Taguchi K, Iwami K, Ibuki F, Kawabata M. Oxidative stability of sardine oil embedded in spray-dried egg white powder and its use for n-3 unsaturated fatty acid fortification of cookies. Biosci Biotechnol Biochem. 1992;56(4):560–3. https://doi.org/10.1271/bbb.56.560.

    Article  CAS  PubMed  Google Scholar 

  12. Lin C-C, Lin S-Y, Hwang LS. Microencapsulation of squid oil with hydrophilic macromolecules for oxidative and thermal stabilization. J Food Sci. 1995;60(1):36–9. https://doi.org/10.1111/j.1365-2621.1995.tb05601.x.

    Article  CAS  Google Scholar 

  13. Wanasundara UN, Shahidi F. Storage stability of microencapsulated seal blubber oil. J Food Lipids. 1995;2(2):73–86. https://doi.org/10.1111/j.1745-4522.1995.tb00032.x.

    Article  CAS  Google Scholar 

  14. Reithmeier H, Herrmann J, Göpferich A. Development and characterization of lipid microparticles as a drug carrier for somatostatin. Int J Pharm. 2001;218(1–2):133–43. https://doi.org/10.1016/S0378-5173(01)00620-2.

    Article  CAS  PubMed  Google Scholar 

  15. Sinha VR, Trehan A. Biodegradable microspheres for protein delivery. J Control Release. 2003;90(3):261–80. https://doi.org/10.1016/S0168-3659(03)00194-9.

    Article  CAS  PubMed  Google Scholar 

  16. Maschke A, Becker C, Eyrich D, Kiermaier J, Blunk T, Göpferich A. Development of a spray congealing process for the preparation of insulin-loaded lipid microparticles and characterization thereof. Eur J Pharm Biopharm. 2007;65(2):175–87. https://doi.org/10.1016/j.ejpb.2006.08.008.

    Article  CAS  PubMed  Google Scholar 

  17. Deasy PB. General introduction to microencapsulation and related drug processes. Vol book, whole. New York: M. Dekker; 1984.

    Google Scholar 

  18. Akiyama Y, Yoshioka M, Horibe H, Hirai S, Kitamori N, Toguchi H. Novel oral controlled-release microspheres using polyglycerol esters of fatty acids. J Control Release. 1993;26(1):1–10. https://doi.org/10.1016/0168-3659(93)90203-H.

    Article  CAS  Google Scholar 

  19. Albertini B, Passerini N, Pattarino F, Rodriguez L. New spray congealing atomizer for the microencapsulation of highly concentrated solid and liquid substances. Eur J Pharm Biopharm. 2008;69(1):348–57. https://doi.org/10.1016/j.ejpb.2007.09.011An excellent research article that investigated the modification of drug release using both lipophilic and hydrophilic excipients during spray congealing. It reported that increasing melt viscosity resulted in larger microparticle size.

    Article  CAS  PubMed  Google Scholar 

  20. Yajima T, Nogata A, Demachi M, Umeki N, Itai S, Yunoki N, et al. Particle design for taste-masking using a spray-congealing technique. Chem Pharm Bull (Tokyo). 1996;44(1):187–91. https://doi.org/10.1248/cpb.44.187.

    Article  CAS  Google Scholar 

  21. Yajima T, Umeki N, Itai S. Optimum spray congealing conditions for masking the bitter taste of clarithromycin in wax matrix. Chem Pharm Bull (Tokyo). 1999;47(2):220–5. https://doi.org/10.1248/cpb.47.220.

    Article  CAS  Google Scholar 

  22. Yajima T, Fukushima Y, Itai S, Kawashima Y. Method of evaluation of the bitterness of clarithromycin dry syrup. Chem Pharm Bull (Tokyo). 2002;50(2):147–52. https://doi.org/10.1248/cpb.50.147.

    Article  CAS  Google Scholar 

  23. Uchida T, Tanigake A, Miyanaga Y, Matsuyama K, Kunitomo M, Kobayashi Y, et al. Evaluation of the bitterness of antibiotics using a taste sensor. J Pharm Pharmacol. 2003;55(11):1479–85. https://doi.org/10.1211/0022357022106.

    Article  CAS  PubMed  Google Scholar 

  24. Yajima T, Itai S, Takeuchi H, Kawashima Y. Optimum heat treatment conditions for masking the bitterness of the clarithromycin wax matrix. Chem Pharm Bull (Tokyo). 2003;51(11):1223–6. https://doi.org/10.1248/cpb.51.1223.

    Article  CAS  Google Scholar 

  25. Qi S, Deutsch D, Craig DQM. An investigation into the interaction between taste masking fatty acid microspheres and alkaline buffer using thermal and spectroscopic analysis. J Pharm Sci. 2006;95(5):1022–8. https://doi.org/10.1002/jps.20596.

    Article  CAS  PubMed  Google Scholar 

  26. Bodmer D, Kissel T, Traechslin E. Factors influencing the release of peptides and proteins from biodegradable parenteral depot systems. J Control Release. 1992;21(1):129–37. https://doi.org/10.1016/0168-3659(92)90014-I.

    Article  CAS  Google Scholar 

  27. Novartis, Bodmer D, Fong JW, Kissel T, Maulding HV, Nagele O et al., inventors; Novartis AG, assignee. Sustained release formulations of water soluble peptides. United States patent US5538739A. 1996.

  28. Rodriguez L, Passerini N, Cavallari C, Cini M, Sancin P, Fini A. Description and preliminary evaluation of a new ultrasonic atomizer for spray-congealing processes. Int J Pharm. 1999;183(2):133–43. https://doi.org/10.1016/S0378-5173(99)00076-9.

    Article  CAS  PubMed  Google Scholar 

  29. Passerini N, Perissutti B, Moneghini M, Voinovich D, Albertini B, Cavallari C, et al. Characterization of carbamazepine-gelucire 50/13 microparticles prepared by a spray-congealing process using ultrasounds. J Pharm Sci. 2002;91(3):699–707. https://doi.org/10.1002/jps.10085.

    Article  CAS  PubMed  Google Scholar 

  30. Savolainen M, Khoo C, Glad H, Dahlqvist C, Juppo AM. Evaluation of controlled-release polar lipid microparticles. Int J Pharm. 2002;244(1–2):151–61. https://doi.org/10.1016/S0378-5173(02)00325-3.

    Article  CAS  PubMed  Google Scholar 

  31. Passerini N, Perissutti B, Albertini B, Voinovich D, Moneghini M, Rodriguez L. Controlled release of verapamil hydrochloride from waxy microparticles prepared by spray congealing. J Control Release. 2003;88(2):263–75. https://doi.org/10.1016/S0168-3659(03)00009-9An excellent research article that investigated the potential of microcrystalline wax and stearyl alcohol for preparing spray-congealed microparticles to control verapamil release. Soya lecithin was used as surfactant and resulted in higher drug release. X-ray photoelectron spectroscopy was also explored to detect if drug was present on the surface or encapsulated within the microparticles.

    Article  CAS  PubMed  Google Scholar 

  32. Quadir MA, Rahman MS, Karim MZ, Akter S, Awkat MTB, Reza MS. Evaluation of hydrophobic materials as matrices for controlled-release drug delivery. Pak J Pharm Sci. 2003;16(2):17–28.

    CAS  PubMed  Google Scholar 

  33. Savolainen M, Herder J, Khoo C, Lövqvist K, Dahlqvist C, Glad H, et al. Evaluation of polar lipid–hydrophilic polymer microparticles. Int J Pharm. 2003;262(1–2):47–62. https://doi.org/10.1016/S0378-5173(03)00336-3.

    Article  CAS  PubMed  Google Scholar 

  34. Park SB, Kang HW, Haam S, Park HY, Kim WS. Ca-alginate microspheres encapsulated in chitosan beads. J Microencapsul. 2004;21(5):485–97. https://doi.org/10.1080/02652040410001729269.

    Article  CAS  PubMed  Google Scholar 

  35. Bilati U, Allémann E, Doelker E. Strategic approaches for overcoming peptide and protein instability within biodegradable nano- and microparticles. Eur J Pharm Biopharm. 2005;59(3):375–88. https://doi.org/10.1016/j.ejpb.2004.10.006.

    Article  CAS  PubMed  Google Scholar 

  36. Jaspart S, Piel G, Delattre L, Evrard B. Solid lipid microparticles: formulation, preparation, characterisation, drug release and applications. Expert Opin Drug Deliv. 2005;2(1):75–87. https://doi.org/10.1517/17425247.2.1.75.

    Article  CAS  PubMed  Google Scholar 

  37. Passerini N, Albertini B, Perissutti B, Rodriguez L. Evaluation of melt granulation and ultrasonic spray congealing as techniques to enhance the dissolution of praziquantel. Int J Pharm. 2006;318(1–2):92–102. https://doi.org/10.1016/j.ijpharm.2006.03.028.

    Article  CAS  PubMed  Google Scholar 

  38. Sasol. Fischer-Tropsch waxes. 2018. http://www.sasolwax.com/index.php?id=fischer_tropsch_wax. 19 March 2018.

  39. Ouyang H, Zheng AY, Heng PWS, Chan LW. Effect of lipid additives and drug on the rheological properties of molten paraffin wax, degree of surface drug coating, and drug release in spray-congealed microparticles. Pharmaceutics. 2018;10(3):75. https://doi.org/10.3390/pharmaceutics10030075.

    Article  CAS  PubMed Central  Google Scholar 

  40. Scott MW, Robinson MJ, Pauls JF, Lantz RJ. Spray congealing: particle size relationships using a centrifugal wheel atomizer. J Pharm Sci. 1964;53(6):670–5. https://doi.org/10.1002/jps.2600530621.

    Article  CAS  PubMed  Google Scholar 

  41. Eldem T, Speiser P, Hincal A. Optimization of spray-dried and -congealed lipid micropellets and characterization of their surface morphology by scanning electron microscopy. Pharm Res. 1991;8(1):47–54. https://doi.org/10.1023/a:1015874121860.

    Article  CAS  PubMed  Google Scholar 

  42. Albertini B, Passerini N, González-Rodríguez ML, Perissutti B, Rodriguez L. Effect of Aerosil® on the properties of lipid controlled release microparticles. J Control Release. 2004;100(2):233–46. https://doi.org/10.1016/j.jconrel.2004.08.013.

    Article  CAS  PubMed  Google Scholar 

  43. . McCarron PA, Donnelly RF, Al-Kassas R. Comparison of a novel spray congealing procedure with emulsion-based methods for the micro-encapsulation of water-soluble drugs in low melting point triglycerides. J Microencapsul. 2008;25(6):365–78. https://doi.org/10.1080/02652040802000656An excellent research article that investigated the microencapsulation of water-soluble drugs by triglyeride materials using spray congealing. Surfactants were employed and resulted in higher drug release. It also noted that the presence of surface drug readily accessible to release medium could result in rapid dissolution, which is related to the extent of drug embedment within the microparticles.

    Article  CAS  PubMed  Google Scholar 

  44. Cavallari C, Gonzalez-Rodriguez M, Tarterini F, Fini A. Image analysis of lutrol/gelucire/olanzapine microspheres prepared by ultrasound-assisted spray congealing. Eur J Pharm Biopharm. 2014;88(3):909–18. https://doi.org/10.1016/j.ejpb.2014.08.014An excellent research article that investigated the use of spray congealing to produce microparticles of Gelucire and Lutrol containing olanzapine, formulated as a solid dispersion. It explored the use of energy-dispersive X-ray and micro-Raman spectroscopy to evaluate the homogeneity of drug distribution on the microparticle surface.

    Article  CAS  PubMed  Google Scholar 

  45. Rosen MJ, Kunjappu JT. Surfactants and interfacial phenomena. 4th ed. Hoboken: Wiley; 2012.

    Book  Google Scholar 

  46. Albertini B, Mezzena M, Passerini N, Rodriguez L, Scalia S. Evaluation of spray congealing as technique for the preparation of highly loaded solid lipid microparticles containing the sunscreen agent, avobenzone. J Pharm Sci. 2008;98(8):2759–69. https://doi.org/10.1002/jps.21636An excellent research article that investigated the microencapsulation of avobenzone by carnauba wax using spray congealing. This allowed reduction of photo-instability and modulation of drug release. The use of phosphatidylcholine as surfactant resulted in lower drug release.

    Article  CAS  Google Scholar 

  47. Scalia S, Traini D, Young PM, Di Sabatino M, Passerini N, Albertini B. Comparison of spray congealing and melt emulsification methods for the incorporation of the water-soluble salbutamol sulphate in lipid microparticles. Pharm Dev Technol. 2013;18(1):266–73. https://doi.org/10.3109/10837450.2012.717947.

    Article  CAS  PubMed  Google Scholar 

  48. Stearic Acid [database on the Internet]. National Center for Biotechnology Information. 2018. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/stearic_acid - section=Top. Accessed: 11 December 2018.

  49. Cetyl Alcohol [database on the Internet]. National Center for Biotechnology Information. 2018. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/1-Hexadecanol - section=Top. Accessed: 11 December 2018.

  50. Acetaminophen [database on the Internet]. National Center for Biotechnology Information. 2018. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/acetaminophen - section=Top. Accessed: 11 December 2018.

  51. Mendyk A, Jachowicz R, Fijorek K, Dorozynski P, Kulinowski P, Polak S. KinetDS: an open source software for dissolution test data analysis. Dissolut Technol. 2012;19(1):6–11.

    Article  Google Scholar 

  52. Dash S, Murthy PN, Nath L, Chowdhury P. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm. 2010;67(3):217–23 An excellent review article that explained the different kinetic models used to determine drug release kinetics from drug delivery systems.

    CAS  PubMed  Google Scholar 

  53. Cusimano AG, Becker CH. Spray-congealed formulations of sulfaethylthiadiazole (SETD) and waxes for prolonged-release medication. Effect wax J Pharm Sci. 1968;57(7):1104–12. https://doi.org/10.1002/jps.2600570704.

    Article  CAS  PubMed  Google Scholar 

  54. John PM, Becker CH. Surfactant effects on spray-congealed formulations of sulfaethylthiadiazole-wax. J Pharm Sci. 1968;57(4):584–9. https://doi.org/10.1002/jps.2600570407.

    Article  CAS  PubMed  Google Scholar 

  55. Albertini B, Sabatino MD, Melegari C, Passerini N. Formulation of spray congealed microparticles with self-emulsifying ability for enhanced glibenclamide dissolution performance. J Microencapsul. 2015;32(2):181–92. https://doi.org/10.3109/02652048.2014.985341.

    Article  CAS  PubMed  Google Scholar 

  56. Salvim MO, Thomazini M, Pelaquim FP, Urbano A, Moraes ICF, Favaro-Trindade CS. Production and structural characterization of solid lipid microparticles loaded with soybean protein hydrolysate. Food Res Int. 2015;76(Part 3):689–96. https://doi.org/10.1016/j.foodres.2015.08.003.

    Article  CAS  PubMed  Google Scholar 

  57. Mitsubishi CFC. Introduction of Sugar Esters. 2018. http://www.mfc.co.jp/english/whatsse.htm. 11 December 2018.

  58. Guo QY, Chan LW, Heng PWS. Investigation of the release of aspirin from spray-congealed micro-pellets. J Microencapsul. 2005;22(3):245–51. https://doi.org/10.1080/02652040500100345.

    Article  CAS  PubMed  Google Scholar 

  59. Martins RM, Siqueira S, Freitas LAP. Spray congealing of pharmaceuticals: study on production of solid dispersions using box-behnken design. Dry Technol. 2012;30(9):935–45. https://doi.org/10.1080/07373937.2011.633251.

    Article  CAS  Google Scholar 

  60. Larkin P. Chapter 8 - Illustrated IR and Raman spectra demonstrating important functional groups. In: Infrared and Raman Spectroscopy. Oxford: Elsevier; 2011. p. 135–76.

    Chapter  Google Scholar 

  61. Shiino K, Iwao Y, Miyagishima A, Itai S. Optimization of a novel wax matrix system using aminoalkyl methacrylate copolymer E and ethylcellulose to suppress the bitter taste of acetaminophen. Int J Pharm. 2010;395(1–2):71–7. https://doi.org/10.1016/j.ijpharm.2010.05.007.

    Article  CAS  PubMed  Google Scholar 

  62. Siewert M, Dressman J, Brown CK, Shah VP. FIP/AAPS guidelines to dissolution/in vitro release testing of novel/special dosage forms. AAPS PharmSciTech. 2003;4(1) E7:43–52. https://doi.org/10.1208/pt040107.

    Article  CAS  PubMed Central  Google Scholar 

  63. Anand V, Kataria M, Kukkar V, Saharan V, Choudhury PK. The latest trends in the taste assessment of pharmaceuticals. Drug Discov Today. 2007;12(5):257–65. https://doi.org/10.1016/j.drudis.2007.01.010.

    Article  CAS  PubMed  Google Scholar 

  64. Patel V, Patel NM. Controlled release of dipyridamole from floating matrices prepared using glyceryl behenate. Drug Deliv Technol. 2008;8(7):54–9.

    Google Scholar 

  65. Üner M, Çelebi B. Design of hydralazine hydrochloride matrix tablets based on various polymers and lipids. Ind J Pharm Edu Res. 2012;46(1):75–87.

    Google Scholar 

  66. Kamalakkannan V, Puratchikody A, Ramanathan L. Development and characterization of controlled release polar lipid microparticles of candesartan cilexetil by solid dispersion. Res Pharm Sci. 2013;8(2):125–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Achulatla H, Rao VU, Sudhakar M. Development and study of an erodible matrix drug delivery platform for sustained release of non-steroidal anti-inflammatory drugs using melt granulation process. Open J Adv Drug Deliv. 2014;2(4):576–84.

    Google Scholar 

  68. Costa P, Sousa Lobo JM. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13(2):123–33. https://doi.org/10.1016/S0928-0987(01)00095-1.

    Article  CAS  PubMed  Google Scholar 

Download references

Code Availability

Not applicable.

Funding

The authors would like to acknowledge the financial support provided by the GEA-NUS PPRL fund (N-148-000-008-001). Ouyang Hongyi is a recipient of the National University of Singapore Graduate Research Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lai Wah Chan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 1360 kb)

ESM 2

(DOCX 2752 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouyang, H., Poh, A.S.Y., Heng, P.W.S. et al. Effect of Surfactants on the Melt Viscosity and Extent of Drug Embedment of Paraffin Wax Blends in Spray Congealing. J Pharm Innov 17, 414–428 (2022). https://doi.org/10.1007/s12247-020-09517-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-020-09517-2

Keywords

Navigation