Skip to main content

Fast Continuous Non-Seeded Cooling Crystallization of Glycine in Slug Flow: Pure α-Form Crystals with Narrow Size Distribution



Glycine has been widely used as pharmaceutical excipients and synthesis reagents, and commercial glycine has a significant amount of aggregation and wide particle size distribution. A simple but reproducible process for generating uniform glycine crystals is always desired for both product quality and process efficiency purposes.


Continuous cooling crystallization of glycine has been carried out in air-liquid slug flow in millimeter ID tubing, starting from solution without using seeds. Slugs were formed by combining air and liquid streams, then went through the crash cooling zone of varying lengths (tubing length in contact with ice bags). The operational boundaries of crash cooling times were evaluated: natural cooling (lower bound, no crash cooling), maximum cooling time for pure α-form without aggregation (upper bound), and beyond upper bound.


Non-aggregating pure α-form glycine crystals were continuously generated within ~ 10 min, feasible from multiple conditions (combinations of crashing cooling time and starting concentration). When crash cooling time further increases (while maintaining the starting concentration), crystal aggregations and/or γ-form crystals could appear. Reducing starting concentration can allow longer crash cooling time without widening product crystal size distribution or reducing crystalline form purity. At proper conditions, even natural cooling in slugs can nucleate and grow non-aggregated pure α-form crystals. All cooling conditions carried out in slug flow generally minimize needle-shaped crystals compared with corresponding batches.


Glycine crystals of α-form and narrow size distribution can be continuously generated within 10 min from cooling crystallization in millimeter-sized slug flow, without using external seeds nor adding solvent/additives. And, the operational boundaries of crash cooling time (at proper starting concentrations) for pure α-form non-aggregating product crystals are identified.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Myerson AS. Handbook of industrial crystallization. 2nd ed. Woburn, MA: Butterworth-Heinemann; 2002.

    Google Scholar 

  2. 2.

    Mullin JW. Crystallization. 4th ed. Oxford: Butterworth-Heinemann; 2001.

    Google Scholar 

  3. 3.

    Tung H-H, Paul EL, Midler M, McCauley JA. Crystallization of pharmaceuticals: an industrial perspective. Hoboken, NJ: Wiley; 2009.

    Google Scholar 

  4. 4.

    Lewis EA, Seckler MM, Kramer H, van Rosmalen G. Industrial crystallization: fundamentals and applications. Cambridge: Cambridge University Press; 2015.

    Book  Google Scholar 

  5. 5.

    Yu LX. Pharmaceutical quality by design: product and process development, understanding, and control. Pharm Res. 2008;25:781–91.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Zhang D, Xu S, Du S, Wang J, Gong J. Progress of pharmaceutical continuous crystallization. Engineering. 2017;3:354–64.

    Article  Google Scholar 

  7. 7.

    Rimez B, Debuysschère R, Conté J, Lecomte-Norrant E, Gourdon C, Cognet P, et al. Continuous-flow tubular crystallization to discriminate between two competing crystal polymorphs. 1. Cooling crystallization. Cryst Growth Des. 2018;18:6431–9.

    CAS  Article  Google Scholar 

  8. 8.

    Narayan ST. Industrial crystallization: process simulation analysis and design. Boston, MA: Springer; 1995.

    Google Scholar 

  9. 9.

    Wang H, Mustaffar A, Phan AN, Zivkovic V, Reay D, Law R, et al. A review of process intensification applied to solids handling. Chem Eng Process Process Intensif. 2017;118:78–107.

    CAS  Article  Google Scholar 

  10. 10.

    Nagy ZK, Fujiwara M, Braatz RD. Monitoring and advanced control of crystallization processes. In: Lee AY, Myerson AS, Erdemir D, editors. Handb. Ind. Cryst. 3rd ed. Cambridge: Cambridge University Press; 2019.

    Google Scholar 

  11. 11.

    Lovette MA, Browning AR, Griffin DW, Sizemore JP, Snyder RC, Doherty MF. Crystal shape engineering. Ind Eng Chem Res. 2008;47:9812–33.

    CAS  Article  Google Scholar 

  12. 12.

    Brown CJ, McGlone T, Yerdelen S, Srirambhatla V, Mabbott F, Gurung R, et al. Enabling precision manufacturing of active pharmaceutical ingredients: workflow for seeded cooling continuous crystallisations. Mol Syst Des Eng. 2018;3:518–49.

    CAS  Article  Google Scholar 

  13. 13.

    Wang T, Lu H, Wang J, Xiao Y, Zhou Y, Bao Y, et al. Recent progress of continuous crystallization. J Ind Eng Chem. 2017;54:14–29.

    CAS  Article  Google Scholar 

  14. 14.

    Jiang M, Braatz RD. Designs of continuous-flow pharmaceutical crystallizers: developments and practice. CrystEngComm. 2019;21:3534–51.

    CAS  Article  Google Scholar 

  15. 15.

    Lawton S, Steele G, Shering P, Zhao L, Laird I, Ni XW. Continuous crystallization of pharmaceuticals using a continuous oscillatory baffled crystallizer. Org Process Res Dev. 2009;13:1357–63.

    CAS  Article  Google Scholar 

  16. 16.

    Power G, Hou G, Kamaraju VK, Morris G, Zhao Y, Glennon B. Design and optimization of a multistage continuous cooling mixed suspension, mixed product removal crystallizer. Chem Eng Sci. 2015;133:125–39.

    CAS  Article  Google Scholar 

  17. 17.

    Li J, Trout BL, Myerson AS. Multistage continuous mixed-suspension, mixed-product removal (MSMPR) crystallization with solids recycle. Org Process Res Dev. 2016;20:510–6.

    CAS  Article  Google Scholar 

  18. 18.

    Briggs NEB, Schacht U, Raval V, McGlone T, Sefcik J, Florence AJ. Seeded crystallization of β-L-glutamic acid in a continuous oscillatory baffled crystallizer. Org Process Res Dev. 2015;19:1903–11.

    CAS  Article  Google Scholar 

  19. 19.

    Jiang M, Li Y-EED, Tung H-HH, Braatz RD. Effect of jet velocity on crystal size distribution from antisolvent and cooling crystallizations in a dual impinging jet mixer. Chem Eng Process Process Intensif Elsevier BV. 2015;97:242–7.

    CAS  Article  Google Scholar 

  20. 20.

    Alvarez AJ, Myerson AS. Continuous plug flow crystallization of pharmaceutical compounds. Cryst Growth Des. 2010;10:2219–28.

    CAS  Article  Google Scholar 

  21. 21.

    Hohmann L, Greinert T, Mierka O, Turek S, Schembecker G, Bayraktar E, et al. Analysis of crystal size dispersion effects in a continuous coiled tubular crystallizer: experiments and modeling. Cryst Growth Des. 2018;18:1459–73.

    CAS  Article  Google Scholar 

  22. 22.

    Eder RJP, Radl S, Schmitt E, Innerhofer S, Maier M, Gruber-Woelfler H, et al. Continuously seeded, continuously operated tubular crystallizer for the production of active pharmaceutical ingredients. Cryst Growth Des. 2010;10:2247–57.

    CAS  Article  Google Scholar 

  23. 23.

    Wiedmeyer V, Anker F, Bartsch C, Voigt A, John V, Sundmacher K. Continuous crystallization in a helically coiled flow tube: analysis of flow field, residence time behavior, and crystal growth. Ind Eng Chem Res. 2017;56:3699–712.

    CAS  Article  Google Scholar 

  24. 24.

    Han B, Ezeanowi NC, Koiranen TO, Häkkinen AT, Louhi-Kultanen M. Insights into design criteria for a continuous, sonicated modular tubular cooling crystallizer. Cryst Growth Des. 2018;18:7286–95.

    CAS  Article  Google Scholar 

  25. 25.

    Mou M, Li H, Yang B-S, Jiang M. Continuous generation of millimeter-sized glycine crystals in non-seeded millifluidic slug flow. Crystals. 2019;9:412.

    CAS  Article  Google Scholar 

  26. 26.

    Robertson K, Flandrin P-B, Klapwijk AR, Wilson CC. Design and evaluation of a mesoscale segmented flow reactor (KRAIC). Cryst Growth Des. 2016;16:4759–64.

    CAS  Article  Google Scholar 

  27. 27.

    Jiang M, Papageorgiou CD, Waetzig J, Hardy A, Langston M, Braatz RD. Indirect ultrasonication in continuous slug-flow crystallization. Cryst Growth Des. 2015;15:2486–92.

    CAS  Article  Google Scholar 

  28. 28.

    Jiang M, Zhu Z, Jimenez E, Papageorgiou CD, Waetzig J, Hardy A, et al. Continuous-flow tubular crystallization in slugs spontaneously induced by hydrodynamics. Cryst Growth Des. 2014;14:851–60.

    CAS  Article  Google Scholar 

  29. 29.

    Besenhard MO, Hohl R, Hodzic A, Eder RJP, Khinast JG. Modeling a seeded continuous crystallizer for the production of active pharmaceutical ingredients. Cryst Res Technol. 2014;49:92–108.

    CAS  Article  Google Scholar 

  30. 30.

    Rasche ML, Jiang M, Braatz RD. Mathematical modeling and optimal design of multi-stage slug-flow crystallization. Comput Chem Eng. 2016;95:240–8.

    CAS  Article  Google Scholar 

  31. 31.

    Besenhard MO, Neugebauer P, Scheibelhofer O, Khinast JG. Crystal engineering in continuous plug-flow crystallizers. Cryst Growth Des. 2017;17:6432–44.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Su M, Gao Y. Air-liquid segmented continuous crystallization process optimization of the flow field, growth rate, and size distribution of crystals. Ind Eng Chem Res. 2018;57:3781–91.

    CAS  Article  Google Scholar 

  33. 33.

    Rabesiaka M, Sghaier M, Fraisse B, Porte C, Havet JL, Dichi E. Preparation of glycine polymorphs crystallized in water and physicochemical characterizations. J Cryst Growth [Internet]. Elsevier; 2010;312:1860–1865. Available from:

  34. 34.

    Hamilton BD, Hillmyer MA, Ward MD. Glycine polymorphism in nanoscale crystallization chambers. Cryst Growth Des. 2008;8:3368–75.

    CAS  Article  Google Scholar 

  35. 35.

    Bonnin-Paris J, Stéphane B, Jean-Louis H, Fauduet H. Determination of the metastable zone width of Glycine aqueous solutions for batch crystallizations. Chem Eng Commun. 2011;198:1004–17.

    CAS  Article  Google Scholar 

  36. 36.

    Moscosa-Santillán M, Bals O, Fauduet H, Porte C, Delacroix A. Study of batch crystallization and determination of an alternative temperature-time profile by on-line turbidity analysis-application to glycine crystallization. Chem Eng Sci. 2000;55:3759–70.

    Article  Google Scholar 

  37. 37.

    Little LJ, Sear RP, Keddie JL. Does the γ polymorph of glycine nucleate faster? A quantitative study of nucleation from aqueous solution. Cryst Growth Des. 2015;15:5345–54.

    CAS  Article  Google Scholar 

  38. 38.

    Dandekar P, Kuvadia ZB, Doherty MF. Engineering crystal morphology. Annu Rev Mater Res. 2013;43:359–86.

    CAS  Article  Google Scholar 

  39. 39.

    Renuka Devi K, Gnanakamatchi V, Srinivasan K. Attainment of unstable β nucleation of glycine through novel swift cooling crystallization process. J Cryst Growth [Internet]. 2014;400:34–42. Elsevier; Available from:.

    CAS  Article  Google Scholar 

  40. 40.

    He G, Bhamidi V, Wilson SR, Tan RBH, Kenis PJA, Zukoski CF. Direct growth of γ-glycine from neutral aqueous solutions by slow, evaporation-driven crystallization. Cryst Growth Des. 2006;6:1746–9.

    CAS  Article  Google Scholar 

  41. 41.

    Srinivasan K. Crystal growth of α and γ glycine polymorphs and their polymorphic phase transformations. J Cryst Growth. 2008;311:156–62.

    CAS  Article  Google Scholar 

  42. 42.

    Bhat MN, Dharmaprakash SM. Effect of solvents on the growth morphology and physical characteristics of nonlinear optical γ-glycine crystals. J Cryst Growth. 2002;242:245–52.

    CAS  Article  Google Scholar 

  43. 43.

    Neugebauer P, Cardona J, Besenhard MO, Peter A, Gruber-Woelfler H, Tachtatzis C, et al. Crystal shape modification via cycles of growth and dissolution in a tubular crystallizer. Cryst Growth Des. 2018;18:4403–15.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. 44.

    Kudo S, Takiyama H. Production of fine organic crystalline particles by using milli segmented flow crystallizer. J Chem Eng Jpn. 2012;45:305–9.

    CAS  Article  Google Scholar 

  45. 45.

    Perlovich GL, Hansen LK, Bauer-Brandl A. The polymorphism of glycine: thermochemical and structural aspects. J Therm Anal Calorim. 2001;66:699–715.

    CAS  Article  Google Scholar 

  46. 46.

    Netzel J, Hofmann A, Van Smaalen S. Accurate charge density of α-glycine by the maximum entropy method. CrystEngComm. 2008;10:335–43.

    CAS  Article  Google Scholar 

  47. 47.

    Langan P, Mason SA, Myles D, Schoenborn BP. Structural characterization of crystals of α-glycine during anomalous electrical behaviour. Acta Crystallogr Sect B Struct Sci International Union of Crystallography. 2002;58:728–33.

    Article  CAS  Google Scholar 

  48. 48.

    Barrett P, Smith B, Worlitschek J, Bracken V, O’Sullivan B, O’Grady D. A review of the use of process analytical technology for the understanding and optimization of production batch crystallization processes. Org Process Res Dev. 2005;9:348–55.

    CAS  Article  Google Scholar 

  49. 49.

    Chen J, Sarma B, Evans JMBB, Myerson AS. Pharmaceutical crystallization. Cryst Growth Des American Chemical Society. 2011;11:887–95.

    CAS  Article  Google Scholar 

  50. 50.

    Jiang Q, Shtukenberg AG, Ward MD, Hu C. Non-topotactic phase transformations in single crystals of β-glycine. Cryst Growth Des. 2015;15:2568–73.

    CAS  Article  Google Scholar 

  51. 51.

    Daniel Scott C, Labes R, Depardieu M, Battilocchio C, Davidson MG, Ley SV, et al. Integrated plug flow synthesis and crystallisation of pyrazinamide. React Chem Eng. 2018;3:631–4.

    Article  Google Scholar 

  52. 52.

    Majumder A, Nagy ZK. Fines removal in a continuous plug flow crystallizer by optimal spatial temperature profiles with controlled dissolution. AICHE J. 2013;59:4582–94.

    CAS  Article  Google Scholar 

  53. 53.

    Giulietti M, Seckler MM, Derenzo S, Ré MI, Cekinski E. Industrial crystallization and precipitation from solutions: state of the technique. Brazilian J Chem Eng SCIELO. 2001;18:423–40.

    CAS  Article  Google Scholar 

  54. 54.

    Vesga MJ, McKechnie D, Mulheran PA, Johnston K, Sefcik J. Conundrum of γ glycine nucleation revisited: to stir or not to stir? CrystEngComm Royal Society of Chemistry. 2019;21:2234–43.

    CAS  Google Scholar 

  55. 55.

    Anbu Chudar Azhagan S, Kathiravan VS, Sathiya Priya N. Crystallization, habit modification and control of nucleation of glycine polymorphs from aqueous solutions doped with magnesium sulfate impurity. Mater Sci Pol. 2018;36:483–93.

    Article  CAS  Google Scholar 

  56. 56.

    Di Profio G, Tucci S, Curcio E, Drioli E. Selective glycine polymorph crystallization by using microporous membranes. Cryst Growth Des. 2007;7:526–30.

    Article  CAS  Google Scholar 

Download references


Virginia Commonwealth University is acknowledged for the financial support.

Author information



Corresponding author

Correspondence to Mo Jiang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material


(DOCX 8087 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mou, M., Jiang, M. Fast Continuous Non-Seeded Cooling Crystallization of Glycine in Slug Flow: Pure α-Form Crystals with Narrow Size Distribution. J Pharm Innov 15, 281–294 (2020).

Download citation


  • Continuous crystallization
  • Glycine
  • Cooling nucleation
  • Slug flow
  • Aggregation
  • Polymorph