Skip to main content
Log in

Enhancement in Dissolution Rate of Atorvastatin Trihydrate Calcium by Formulating Its Porous Tablet Using Sublimation Technique

  • Original Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Objective

Proposed study was aimed to formulate and evaluate atorvastatin trihydrate calcium porous tablet.

Methods

Since atorvastatin trihydrate calcium is highly unstable drug and is immensely susceptible to hydrolysis and oxidation process, sublimation technique is taken into account for preparing porous tablet by using direct compression technique. Excipient screening and pre-formulation study was conducted to evaluate the presence of drug-excipient compatibility. Formulation was optimised using central composite design (CCD) and optimized batch was further characterised by scanning electron microscopy (SEM) for identification of surface topography. Optimized formulation was also characterised with respect to FTIR, TGA analysis, compression analysis, in vitro drug release studies and stability studies.

Results

Hardness, friability, disintegration time and drug content of optimized porous tablets were found to be 3.46 kg/cm2, 0.92%, 7.23 s and 97.00%, respectively. Compression analysis showed optimized formulation powder is soft and plastic in nature. Tensile strength studies revealed that the tensile strength increases with increase in compression pressure. SEM studies confirmed the presence of number of pores with less than 10 μm pore size. FTIR and TGA studies confirmed that there is no change in chemical structure of drug even in porous tablet. Prepared porous tablets released 85.06 ± 15.55% of drug in 25 min whereas immediate release marketed tablets and pure drug released only 59.13 ± 4.78% and 11.36 ± 2.90% of drug in a same time. The release of proposed dosage form was substantially greater than the marketed product. Preliminary profile of stability studies did not show any significant change (p > 0.05) in the results after 90 days.

Conclusion

Porous tablets improved release rate which confirmed that this approach may be useful to enhance the dissolution rate of atorvastatin trihydrate calcium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Cosijns A, Vervaet C, Luyten J, Mullens S, Siepmann F, van Hoorebeke L, et al. Porous hydroxyapatite tablets as carriers for low-dosed drugs. Eur J Pharm Biopharm. 2007;67(2):498–506.

    CAS  PubMed  Google Scholar 

  2. Ahjel SW, Lupuleasa D. Enhancement of solubility and dissolution rate of different forms of atorvastatin calcium in direct compression tablet formulas. Farmacia. 2009;57(3):290–300.

    CAS  Google Scholar 

  3. Rodde MS, Divase GT, Devkar TB, Tekade AR. Solubility and bioavailability enhancement of poorly aqueous soluble atorvastatin: in vitro, ex vivo, and in vivo studies. Biomed Res Int. 2014;2014(463895):11.

    Google Scholar 

  4. Geethalakshmi A, Divya V, Mahalingan K. Enhancement of solubility and dissolution rate of atorvastatin calcium by co-solvent evaporation. World J Pharm Pharm Sci. 2013;2(5):3790–806.

    Google Scholar 

  5. Wicaksono Y, Wisudyaningsih B, Siswoyo TA. Enhancement of solubility and dissolution rate of atorvastatin calcium by co-crystallization. Trop J Pharm Res. 2017;16(7):1497–502.

    CAS  Google Scholar 

  6. Sharma Y, Kumar K, Padhy SK. Formulation and evaluation of atorvastatin calcium niosomes. Int J Life Sci Scienti Res. 2016;2(4):462–5.

    Google Scholar 

  7. Bora D, Borude P, Bhise K. Formulation and evaluation of self microemulsifying drug delivery systems of low solubility drug for enhanced solubility and dissolution. Asian J Biomed Pharm Sci. 2012;2(15):7–14.

    CAS  Google Scholar 

  8. Ajmeral A, Deshpande S, Kharadi S, et al. Dissolution rate enhancement of atorvastatin, fenofibrate and ezetimibe by inclusion complex with β-cyclodextrin. Asian J Pharm Clin Res. 2012;5(4):73–6.

    Google Scholar 

  9. Kulkarni MC, Kolhe SV. Formulation development and evaluation of atorvastatin calcium tablets using co-processed excipients. Int J Pharm Sci Rev Res. 2016;36(1):217–22.

    CAS  Google Scholar 

  10. Gubbi SR, Jarag R. Formulation and characterization of atorvastatin calcium liquisolid compacts. Asian J Pharm Sci. 2010;5(2):50–60.

    Google Scholar 

  11. Chandiran IS, Anandakirouchenane E. Enhancement of solubility of atorvastatin calcium by nanosuspension technique. Int J Biopharm. 2014;5(3):214–7.

    Google Scholar 

  12. Hasson KJ. Enhancement of atorvastatin tablet dissolution using acid medium. Iraqi J Pharm Sci. 2010;19(1):82–5.

    Google Scholar 

  13. Maniya NH, Patel SR, Murthy ZVP. Drug delivery with porous silicon films, microparticles and nanoparticles. Rev Adv Mater Sci. 2016;44:257–72.

    CAS  Google Scholar 

  14. Markl D, Wang P, Ridgway C, Karttunen AP, Chakraborty M, Bawuah P, et al. Characterization of the pore structure of functionalized calcium carbonate tablets by terahertz time-domain spectroscopy and X-ray computed microtomography. J Pharm Sci. 2017;106:1586–95.

    CAS  PubMed  Google Scholar 

  15. Zhou M, Shen L, Lin X, Hong Y, Feng Y. Design and pharmaceutical applications of porous particles. RSC Adv. 2017;7:39490–501.

    CAS  Google Scholar 

  16. Sharma S, Sher P, Badve S, et al. Adsorption of meloxicam on porous calcium silicate: characterization and tablet formulation. AAPSPharmSciTech. 2005;6(4):E618–25.

    Google Scholar 

  17. Ishikawa T, Watanabe Y, Utoguchi N, et al. Preparation and evaluation of tablets rapidly disintegrating in saliva containing bitter-taste-masked granules by the compression method. Chem Pharm Bull. 1999;47(10):1451–4.

    CAS  Google Scholar 

  18. Koizumi K, Watanabe Y, Morita K, Utoguchi N, Matsumoto M. New method of preparing high-porosity rapidly saliva soluble compressed tablets using mannitol with camphor, a subliming material. Int J Pharm. 1997;152(1):127–31.

    CAS  Google Scholar 

  19. Singh SS, Verma R, Kumar L. Porous oral drug delivery system—tablets. Pharm Chem J. 2018. 52(6):553–61.

  20. Porosity and its influence on pharmaceutical tablet dissolution profiles, 2017. Available at: https://www.azom.com/article.aspx? ArticleID=13574. Accessed on May 28, 2018.

  21. Quodbach J, Kleinebudde P. A critical review on tablet disintegration. Pharm Dev Technol. 2016;21(6):763–74.

    CAS  PubMed  Google Scholar 

  22. Podczeck F. Methods for the practical determination of the mechanical strength of tablets—from empiricism to science. Int J Pharm. 2012;436:214–32.

    CAS  PubMed  Google Scholar 

  23. Thoorens G, Krier F, Leclercq B, Carlin B, Evrard B. Microcrystalline cellulose, a direct compression binder in a quality by design environment—a review. Int J Pharm. 2014;473:64–72.

    CAS  PubMed  Google Scholar 

  24. Hasegawa M. Direct compression: microcrystalline cellulose grade 12 versus classic grade 102. Pharm Technol. 2002;26:50–60.

    Google Scholar 

  25. Estibeiro AL, Harmalkar D, Godinho S, et al. Lacidipine porous tablets: formulation and in vitro characterization. Lat Am J Pharm. 2018;37:1764–71.

    CAS  Google Scholar 

  26. Shirsand SB, Suresh S, Kusumdevi V, Swamy PV. Formulation design and optimization of fast dissolving clonazepam tablets by sublimation method. Indian J Pharm Sci. 2011;73:491–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Jeevanandham S, Dhachinamoorthi D, Chandra Sekhar KB, Muthukumaran M, Sriram N, Joysaruby J. Formulation and evaluation of naproxen sodium orodispersible tablets—a sublimation technique. Asian J Pharm. 2010;Jan-Mar;4:48–51.

    CAS  Google Scholar 

  28. Elbary AA, Ali AA, Aboud HM. Enhanced dissolution of meloxicam from orodispersible tablets prepared by different methods. Bull Faculty Pharm Cairo Univ. 2012;50:89–97.

    Google Scholar 

  29. Barnes TJ, Jarvis KL, Prestidge CA. Recent advances in porous silicon technology for drug delivery. Ther Deliv. 2013;4(7):811–23.

    CAS  PubMed  Google Scholar 

  30. Srinivas NSK, Verma R, Kulyadi GP, et al. A quality by design approach on polymeric nanocarrier delivery of gefitinib: formulation, in vitro and in vivo characterization. Int J Nanomed. 2017;12:15–28.

    CAS  Google Scholar 

  31. Kumar L, Reddy MS, Managuli RS, et al. Full factorial design for optimization, development and validation of HPLC method to determine valsartan in nanoparticles. Saudi Pharm J. 2015;23(5):549–55.

    PubMed  PubMed Central  Google Scholar 

  32. Kumar L, Reddy MS, Shirodkar RK, Pai GK, Krishna VT, Verma R. Preparation and characterization of fluconazole vaginal films for the treatment of vaginal candidiasis. Indian J Pharm Sci. 2013;75(5):585–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Venugopal P, Gnanaprakash K, Kumar B, et al. Development of formulation and evaluation of ramipril porous tablet by sublimation technique. Int J Biopharm. 2014;5(4):258–64.

    Google Scholar 

  34. Kalyankar P, Panzade P, Lahoti S. Formulation design and optimization of orodispersible tablets of quetiapine fumarate by sublimation method. Indian J Pharm Sci. 2015;77(3):267–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Ibahim TM, Abdallah MH, El-Megrab NA, et al. Upgrading of dissolution and anti-hypertensive effect of carvedilol via two combined approaches: self-emulsification and liquisolid techniques. Drug Dev Ind Pharm. 2018;44(6):873–85.

    Google Scholar 

  36. Terakita A, Byrn SR. Structure and physical stability of hydrates and thermotropic mesophase of calcium benzoate. J Pharm Sci. 2006;95(5):1162–72.

    CAS  PubMed  Google Scholar 

  37. Filho ROC, Franco PIBM, Conceição EC, Leles MIG. Stability studies on nifedipine tablets using thermogravimetry and differential scanning calorimetry. J Therm Anal Calorim. 2009;97:343–7.

    CAS  Google Scholar 

  38. Shete G, Puri V, Kumar L, Bansal AK. Solid state characterization of commercial crystalline and amorphous atorvastatin calcium samples. AAPS PharmSciTech. 2010;11(2):598–609.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Alakayleh F, Rashid I, Al-Omari MMH, et al. Compression profiles of different molecular weight. Powder Technol. 2016;299:107–18.

    CAS  Google Scholar 

  40. Persson AS, Ahmed H, Velaga S, Alderborn G. Powder compression properties of paracetamol, paracetamol hydrochloride, paracetamol cocrystals and coformers. J Pharm Sci. 2018;107(7):1920–7.

    CAS  PubMed  Google Scholar 

  41. Paul S, Sun CC. Dependence of friability on tablet mechanical properties and a predictive approach for binary mixtures. Pharm Res. 2017;34:2901–9.

    CAS  PubMed  Google Scholar 

  42. Shivanand P, Sprockel OL. Compaction behaviour of cellulose polymers. Powder Technol. 1992;69:177–84.

    CAS  Google Scholar 

  43. Nordström J, Klevan I, Alderborn G. A protocol for the classification of powder compression characteristics. Eur J Pharm Biopharm. 2012;80(1):209–16.

    PubMed  Google Scholar 

  44. Krycer I, Pope DG, Hersey JA. An evaluation of the techniques employed to investigate powder compaction behaviour. Int J Pharm. 1982;12:113–34.

    CAS  Google Scholar 

  45. Heckel RW. Density-pressure relationship in powder compaction. Trans Metall Soc AIME. 1961;221:671–5.

    CAS  Google Scholar 

  46. Heckel RW. An analysis of powder compaction phenomena. Trans Metall Soc AIME. 1961;221:1001–8.

    Google Scholar 

  47. Chowhan ZT, Chow YP. Compression behaviour of pharmaceutical powders. Int J Pharm. 1980;5:139–48.

    CAS  Google Scholar 

  48. Andhariya JV, Choi S, Wang Y, Zou Y, Burgess DJ, Shen J. Accelerated in vitro release testing method for naltrexone loaded PLGA microspheres. Int J Pharm. 2017;520(1–2):79–85.

    CAS  PubMed  Google Scholar 

  49. Gryczke A, Schminke S, Maniruzzaman M, Beck J, Douroumis D. Development and evaluation of orally disintegrating tablets (ODTs) containing ibuprofen granules prepared by hot melt extrusion. Colloid Surface Biointer. 2011;86:275–84.

    CAS  Google Scholar 

  50. Indian Pharmacopoeia, 2007. Volume 2. Government of India Ministry of Health & Family Welfare Ghaziabad: The Indian Pharmacopoeia Commission pp 751–52.

  51. Kumar L, Reddy MS, Verma R, et al. Selection of cryoprotective agent for freeze drying of valsartan solid lipid nanoparticles. Lat Am J Pharm. 2016;35:483–9.

    Google Scholar 

  52. Silverstein RM, Webster FX. Infrared Spectroscopy. Spectrometric identification of organic compounds. 6th Ed. Singapore: John Wiley & Sons (Asia) Pte. Ltd. 2005;71–143.

  53. Hu L, Gu D, Hu Q, Shi Y, Gao N. Investigation of solid dispersion of atorvastatin calcium in polyethylene glycol 6000 and polyvinylpyrrolidone. Trop J Pharm Res. 2014;13(6):835–42.

    Google Scholar 

  54. Mohylyuk V, Davtian L. Effect of diluent types and soluble diluents particle size on the dissolution profile of trimetazidine dihydrochloride and caffeine from kollidon SR matrix tablets. Int J Pharm Tech Res. 2015;8(6):147–55.

    CAS  Google Scholar 

  55. Khan MS, Vishakante GD, Bathool A. Preparation and evaluation of sodium alginate porous dosage form as carriers for low dosed active pharmaceutical ingredients. Turk J Pharm Sci. 2012;9(2):183–98.

    CAS  Google Scholar 

  56. Patil BS, Rao NGR. Formulation and evaluation of fast dissolving tablets of granisetron hydrochloride by vacuum drying technique. Applied Pharm Sci. 2011;1(4):83–8.

    Google Scholar 

  57. Harshitha MS, Krishnan SK, Ahmed MG. Formulation and evaluation of fast dissolving tablets of nebivolol hydrochloride. Int J Appl Pharm Biolog Res. 2016;1(2):78–86.

    CAS  Google Scholar 

  58. Elkordy AA, Tan XN, Essa EA. Spironolactone release from liquisolid formulations prepared with Capryol™ 90, Solutol® HS-15 and Kollicoat® SR 30 D as non-volatile liquid vehicles. Eur J Pharm Biopharm. 2013;83(2):203–23.

    CAS  PubMed  Google Scholar 

  59. Atorvastatin Tablets, Indian Pharmacopoeia. Government of India Ministry of Health & Family Welfare. 2nd ed. The Indian Pharmacopoeia Commission: Ghaziabad; 2007. p. 751.

    Google Scholar 

  60. Roberts RJ, Rowe RC. The compaction of pharmaceutical and other materials—a pragmatic approach. Chem Eng Sci. 1987;42(4):903–11.

    CAS  Google Scholar 

  61. Atorvastatin calcium trihydrate. European Pharmacopoeia. 8th Edition. Council of Europe. pp. 1598–1600. Available from: https://wenku.baidu.com/view/35a9708f9ec3d5bbfd0a74f3.html?re=view. Accessed on 3rd May 2019.

  62. Atorvastatin calcium trihydrate. PubChem. NIH US National Library of Medicine. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/67019418. Accessed on 3rd May 2019.

  63. Kim MS, Jin SJ, Kim JS, Park HJ, Song HS, Neubert RHH, et al. Preparation, characterization and in vivo evaluation of amorphous atorvastatin calcium nanoparticles using supercritical antisolvent (SAS) process. Eur J Pharm Biopharm. 2008;69:454–65.

    CAS  PubMed  Google Scholar 

  64. Pathan IB, Shingare PR, Kurumkar P. Formulation design and optimization of novel mouth dissolving tablets for venlafaxine hydrochloride using sublimation technique. J Pharm Res. 2013;6:593–8.

    CAS  Google Scholar 

  65. Waiver of in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms based on biopharmaceutics classification system – Guidance for Industry, U.S. Department of health and human services. Food and Drug Administration (FDA), Centre for Drug Evaluation and Research (CDER), December 2017. Available from: https://www.fda.gov/downloads/Drugs/Guidances/ucm070246.pdf. Accessed on 20th June 2018.

Download references

Acknowledgements

The authors are thankful to Dr. Reddy Laboratories, Hyderabad, for providing atorvastatin trihydrate calcium as a gift sample. Authors gratefully acknowledge the help of Dr. Praveen Khullar, Mr. D. Saravanan and Dr. Prakash Muthudoss, Sanofi-Synthelabo (India) Pvt. Ltd., Verna, Goa, for thermogravimetric analysis of samples. Authors are thankful to Flamingo Pharmaceutical Ltd., Mumbai, for Karl Fisher Titrimetry study. Authors are also thankful to Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education and Goa College of Pharmacy for providing the infrastructural facilities to complete this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lalit Kumar.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S.Y., Salwa, Shirodkar, R.K. et al. Enhancement in Dissolution Rate of Atorvastatin Trihydrate Calcium by Formulating Its Porous Tablet Using Sublimation Technique. J Pharm Innov 15, 498–520 (2020). https://doi.org/10.1007/s12247-019-09397-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-019-09397-1

Keywords

Navigation