Advertisement

Advances in In Vivo Predictive Dissolution Testing of Solid Oral Formulations: How Closer to In Vivo Performance?

  • Meera Shrivas
  • Dignesh Khunt
  • Meenakshee Shrivas
  • Manisha Choudhari
  • Rajeshwari Rathod
  • Manju MisraEmail author
Review Article
  • 52 Downloads

Abstract

Dissolution has become an indispensable tool to predict the in vivo performance of dosage form, especially in recent times, because of the increasing complexity of new drugs discovered. Several attempts have been made to modify dissolution, so that it mimics the in vivo behavior to maximum possible accuracy and minimizes the probability of in vivo bioequivalence failures. In this context, several advancements have been reported including drug dissolution/absorption simulating system, bionic system, dissolution/permeation model, biphasic dissolution system, Caco-2 cell monolayer in combination with compendial dissolution apparatus, artificial stomach duodenum model, dynamic gastric model, Netherlands Organization for Applied Scientific Research gastrointestinal model, and many more. The present review highlights the recent advancements in dissolution methods with a focus on in vivo predictive dissolution methods, their advantages and disadvantages, and key factors governing the results obtained. The impact of maintaining sink conditions and use of biorelevant media is also discussed briefly.

Keywords

Dissolution/permeation model In vivo predictive dissolution Biorelevant Microdialysis 

Abbreviations

API

Active pharmaceutical ingredient

ASD

Artificial stomach–duodenum

AUC

Area under the curve

BA/BE

Bioavailability/bioequivalence

BCS

Biopharmaceutical classification system

Caco

Colorectal adenocarcinoma

DDC

Drug dissolution chip

DGM

Dynamic gastric model

D/P

Dissolution/permeation

FDA

Food and Drug Administration

GIS

Gastrointestinal tract simulator

GIT

Gastrointestinal tract

iPD

In vivo predictive dissolution

IVIVC

In vitro–in vivo correlation

M-D/P

Microdialysis–dissolution/permeation

QbD

Quality by design

QCM

Quartz crystal microbalance

R&D

Research and development

SSDDs

Supersaturated drug delivery systems

TIM

TNO intestinal model

TIMagc

TIM advanced gastric compartment

USP

United States Pharmacopeia

UV

Ultraviolet

Notes

Acknowledgments

The authors want to thank the Ministry of Chemicals and Fertilizers for providing the funding and the Department of Science and Technology for providing the funding to authors in the form of INSPIRE faculty award (Grant number LSBM-13; SERB EMR/2016/007966).

Funding Information

This work was supported by the National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad.

Supplementary material

12247_2019_9392_MOESM1_ESM.pdf (2.3 mb)
ESM 1 (PDF 2377 kb)

References

  1. 1.
    Culen M, Dohnal J. Advances in dissolution instrumentation and their practical applications. Drug Dev Ind Pharm. 2014;40(10):1277–82.  https://doi.org/10.3109/03639045.2013.841184.CrossRefPubMedGoogle Scholar
  2. 2.
    USFDA. Guidance for industry: waiver of in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms based on a biopharmaceutics classification system. In: U.S. Department of Health and Human Services FaDA, Center for Drug Evaluation and Research (CDER), editor. 2017.Google Scholar
  3. 3.
    Patadia R, Vora C, Mittal K, Mashru R. Dissolution criticality in developing solid oral formulations: from inception to perception. Crit Rev Ther Drug Carrier Syst. 2013;30(6):495–534.CrossRefPubMedGoogle Scholar
  4. 4.
    USFDA. Guidance for industry; immediate release solid oral dosage forms: scale-up and postapproval changes: chemistry, manufacturing, and controls, in vitro dissolution testing, and in vivo bioequivalence documentation. In: U.S. Department of Health and Human Services FaDA, Center for Drug Evaluation and Research (CDER), editor. 1995.Google Scholar
  5. 5.
    Grignard E, Taylor R, McAllister M, Box K, Fotaki N. Considerations for the development of in vitro dissolution tests to reduce or replace preclinical oral absorption studies. Eur J Pharm Sci. 2017;99:193–201.  https://doi.org/10.1016/j.ejps.2016.12.004.CrossRefPubMedGoogle Scholar
  6. 6.
    Dokoumetzidis A, Macheras P. A century of dissolution research: from Noyes and Whitney to the biopharmaceutics classification system. Int J Pharm. 2006;321(1–2):1–11.  https://doi.org/10.1016/j.ijpharm.2006.07.011.CrossRefPubMedGoogle Scholar
  7. 7.
    Gray V, Kelly G, Xia M, Butler C, Thomas S, Mayock S. The science of USP 1 and 2 dissolution: present challenges and future relevance. Pharm Res. 2009;26(6):1289–302.  https://doi.org/10.1007/s11095-008-9822-x.CrossRefPubMedGoogle Scholar
  8. 8.
    Charkoftaki G, Dokoumetzidis A, Valsami G, Macheras P. Biopharmaceutical classification based on solubility and dissolution: a reappraisal of criteria for hypothesis models in the light of the experimental observations. Basic Clin Pharmacol Toxicol. 2010;106(3):168–72.  https://doi.org/10.1111/j.1742-7843.2009.00506.x.CrossRefPubMedGoogle Scholar
  9. 9.
    Blanquet S, Zeijdner E, Beyssac E, Meunier J-P, Denis S, Havenaar R. A dynamic artificial gastrointestinal system for studying the behavior of orally administered drug dosage forms under various physiological conditions. Pharm Res. 2004;21(4):585–91.  https://doi.org/10.1023/B:PHAM.0000022404.70478.4b.CrossRefPubMedGoogle Scholar
  10. 10.
    Kostewicz ES, Abrahamsson B, Brewster M, Brouwers J, Butler J, Carlert S, et al. In vitro models for the prediction of in vivo performance of oral dosage forms. Eur J Pharm Sci: Off J Eur Fed Pharm Sci. 2014;57:342–66.  https://doi.org/10.1016/j.ejps.2013.08.024.CrossRefGoogle Scholar
  11. 11.
    Higashino H, Hasegawa T, Yamamoto M, Matsui R, Masaoka Y, Kataoka M, et al. In vitro-in vivo correlation of the effect of supersaturation on the intestinal absorption of BCS class 2 drugs. Mol Pharm. 2014;11(3):746–54.  https://doi.org/10.1021/mp400465p.CrossRefPubMedGoogle Scholar
  12. 12.
    Fong SY, Bauer-Brandl A, Brandl M. Oral bioavailability enhancement through supersaturation: an update and meta-analysis. Expert Opin Drug Deliv. 2017;14(3):403–26.  https://doi.org/10.1080/17425247.2016.1218465.CrossRefPubMedGoogle Scholar
  13. 13.
    Lee DH, Yeom DW, Song YS, Cho HR, Choi YS, Kang MJ, et al. Improved oral absorption of dutasteride via Soluplus®-based supersaturable self-emulsifying drug delivery system (S-SEDDS). Int J Pharm. 2015;478(1):341–7.  https://doi.org/10.1016/j.ijpharm.2014.11.060.CrossRefPubMedGoogle Scholar
  14. 14.
    Martinez LM, Videa M, Lopez Silva T, Castro S, Caballero A, Lara-Diaz VJ, et al. Two-phase amorphous-amorphous solid drug dispersion with enhanced stability, solubility and bioavailability resulting from ultrasonic dispersion of an immiscible system. Eur J Pharm Biopharm: Off J Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV. 2017;119:243–52.  https://doi.org/10.1016/j.ejpb.2017.06.021.CrossRefGoogle Scholar
  15. 15.
    Laine AL, Price D, Davis J, Roberts D, Hudson R, Back K, et al. Enhanced oral delivery of celecoxib via the development of a supersaturable amorphous formulation utilising mesoporous silica and co-loaded HPMCAS. Int J Pharm. 2016;512(1):118–25.  https://doi.org/10.1016/j.ijpharm.2016.08.034.CrossRefPubMedGoogle Scholar
  16. 16.
    Sanphui P, Devi VK, Clara D, Malviya N, Ganguly S, Desiraju GR. Cocrystals of hydrochlorothiazide: solubility and diffusion/permeability enhancements through drug-coformer interactions. Mol Pharm. 2015;12(5):1615–22.  https://doi.org/10.1021/acs.molpharmaceut.5b00020.CrossRefPubMedGoogle Scholar
  17. 17.
    Van Den Abeele J, Brouwers J, Mattheus R, Tack J, Augustijns P. Gastrointestinal behavior of weakly acidic BCS class II drugs in man—case study of diclofenac potassium. J Pharm Sci. 2016;105(2):687–96.  https://doi.org/10.1002/jps.24647.CrossRefGoogle Scholar
  18. 18.
    Hamed R, Alnadi SH. Transfer behavior of the weakly acidic BCS class II drug valsartan from the stomach to the small intestine during fasted and fed states. AAPS PharmSciTech. 2018.  https://doi.org/10.1208/s12249-018-1028-x.
  19. 19.
    Tsume Y, Mudie DM, Langguth P, Amidon GE, Amidon GL. The biopharmaceutics classification system: subclasses for in vivo predictive dissolution (IPD) methodology and IVIVC. Eur J Pharm Sci: Off J Eur Fed Pharm Sci. 2014;57:152–63.  https://doi.org/10.1016/j.ejps.2014.01.009.CrossRefGoogle Scholar
  20. 20.
    Alvarez C, Nunez I, Torrado JJ, Gordon J, Potthast H, Garcia-Arieta A. Investigation on the possibility of biowaivers for ibuprofen. J Pharm Sci. 2011;100(6):2343–9.  https://doi.org/10.1002/jps.22472.CrossRefPubMedGoogle Scholar
  21. 21.
    Hamed R, Awadallah A, Sunoqrot S, Tarawneh O, Nazzal S, AlBaraghthi T, et al. pH-dependent solubility and dissolution behavior of carvedilol—case example of a weakly basic BCS class II drug. AAPS PharmSciTech. 2016;17(2):418–26.  https://doi.org/10.1208/s12249-015-0365-2.CrossRefPubMedGoogle Scholar
  22. 22.
    Tsume Y, Takeuchi S, Matsui K, Amidon GE, Amidon GL. In vitro dissolution methodology, mini-gastrointestinal simulator (mGIS), predicts better in vivo dissolution of a weak base drug, dasatinib. Eur J Pharm Sci: Off J Eur Fed Pharm Sci. 2015;76:203–12.  https://doi.org/10.1016/j.ejps.2015.05.013.CrossRefGoogle Scholar
  23. 23.
    Takeuchi S, Tsume Y, Amidon GE, Amidon GL. Evaluation of a three compartment in vitro gastrointestinal simulator dissolution apparatus to predict in vivo dissolution. J Pharm Sci. 2014;103(11):3416–22.  https://doi.org/10.1002/jps.24112.CrossRefPubMedGoogle Scholar
  24. 24.
    Galia E, Nicolaides E, Horter D, Lobenberg R, Reppas C, Dressman JB. Evaluation of various dissolution media for predicting in vivo performance of class I and II drugs. Pharm Res. 1998;15(5):698–705.CrossRefPubMedGoogle Scholar
  25. 25.
    Vertzoni M, Fotaki N, Kostewicz E, Stippler E, Leuner C, Nicolaides E, et al. Dissolution media simulating the intralumenal composition of the small intestine: physiological issues and practical aspects. J Pharm Pharmacol. 2004;56(4):453–62.  https://doi.org/10.1211/0022357022935.CrossRefPubMedGoogle Scholar
  26. 26.
    Vertzoni M, Dressman J, Butler J, Hempenstall J, Reppas C. Simulation of fasting gastric conditions and its importance for the in vivo dissolution of lipophilic compounds. Eur J Pharm Biopharm. 2005;60(3):413–7.  https://doi.org/10.1016/j.ejpb.2005.03.002.CrossRefPubMedGoogle Scholar
  27. 27.
    Jantratid E, Janssen N, Reppas C, Dressman JB. Dissolution media simulating conditions in the proximal human gastrointestinal tract: an update. Pharm Res. 2008;25(7):1663–76.  https://doi.org/10.1007/s11095-008-9569-4.CrossRefPubMedGoogle Scholar
  28. 28.
    Vertzoni M, Diakidou A, Chatzilias M, Soderlind E, Abrahamsson B, Dressman JB, et al. Biorelevant media to simulate fluids in the ascending colon of humans and their usefulness in predicting intracolonic drug solubility. Pharm Res. 2010;27(10):2187–96.  https://doi.org/10.1007/s11095-010-0223-6.CrossRefPubMedGoogle Scholar
  29. 29.
    Mudie DM, Amidon GL, Amidon GE. Physiological parameters for oral delivery and in vitro testing. Mol Pharm. 2010;7(5):1388–405.  https://doi.org/10.1021/mp100149j.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Reppas C, Karatza E, Goumas C, Markopoulos C, Vertzoni M. Characterization of contents of distal ileum and cecum to which drugs/drug products are exposed during bioavailability/bioequivalence studies in healthy adults. Pharm Res. 2015;32(10):3338–49.  https://doi.org/10.1007/s11095-015-1710-6.CrossRefPubMedGoogle Scholar
  31. 31.
    Koziolek M, Grimm M, Garbacz G, Kuhn JP, Weitschies W. Intragastric volume changes after intake of a high-caloric, high-fat standard breakfast in healthy human subjects investigated by MRI. Mol Pharm. 2014;11(5):1632–9.  https://doi.org/10.1021/mp500022u.CrossRefPubMedGoogle Scholar
  32. 32.
    Schneider F, Grimm M, Koziolek M, Modess C, Dokter A, Roustom T, et al. Resolving the physiological conditions in bioavailability and bioequivalence studies: comparison of fasted and fed state. Eur J Pharm Biopharm: Off J Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV. 2016;108:214–9.  https://doi.org/10.1016/j.ejpb.2016.09.009.CrossRefGoogle Scholar
  33. 33.
    Hens B, Brouwers J, Anneveld B, Corsetti M, Symillides M, Vertzoni M, et al. Gastrointestinal transfer: in vivo evaluation and implementation in in vitro and in silico predictive tools. Eur J Pharm Sci: Off J Eur Fed Pharm Sci. 2014;63:233–42.  https://doi.org/10.1016/j.ejps.2014.07.008.CrossRefGoogle Scholar
  34. 34.
    Brouwers J, Augustijns P. Resolving intraluminal drug and formulation behavior: gastrointestinal concentration profiling in humans. Eur J Pharm Sci: Off J Eur Fed Pharm Sci. 2014;61:2–10.  https://doi.org/10.1016/j.ejps.2014.01.010.CrossRefGoogle Scholar
  35. 35.
    Koziolek M, Grimm M, Becker D, Iordanov V, Zou H, Shimizu J, et al. Investigation of pH and temperature profiles in the GI tract of fasted human subjects using the Intellicap(®) system. J Pharm Sci. 2015;104(9):2855–63.  https://doi.org/10.1002/jps.24274.CrossRefPubMedGoogle Scholar
  36. 36.
    Sjogren E, Dahlgren D, Roos C, Lennernas H. Human in vivo regional intestinal permeability: quantitation using site-specific drug absorption data. Mol Pharm. 2015;12(6):2026–39.  https://doi.org/10.1021/mp500834v.CrossRefPubMedGoogle Scholar
  37. 37.
    Lennernas H, Aarons L, Augustijns P, Beato S, Bolger M, Box K, et al. Oral biopharmaceutics tools—time for a new initiative—an introduction to the IMI project OrBiTo. Eur J Pharm Sci: Off J Eur Fed Pharm Sci. 2014;57:292–9.  https://doi.org/10.1016/j.ejps.2013.10.012.CrossRefGoogle Scholar
  38. 38.
    Margolskee A, Darwich AS, Pepin X, Pathak SM, Bolger MB, Aarons L, et al. IMI—oral biopharmaceutics tools project—evaluation of bottom-up PBPK prediction success. Part 1: characterisation of the OrBiTo database of compounds. Eur J Pharm Sci: Off J Eur Fed Pharm Sci. 2017;96:598–609.  https://doi.org/10.1016/j.ejps.2016.09.027.CrossRefGoogle Scholar
  39. 39.
    Margolskee A, Darwich AS, Pepin X, Aarons L, Galetin A, Rostami-Hodjegan A, et al. IMI—oral biopharmaceutics tools project—evaluation of bottom-up PBPK prediction success. Part 2: an introduction to the simulation exercise and overview of results. Eur J Pharm Sci: Off J Eur Fed Pharm Sci. 2017;96:610–25.  https://doi.org/10.1016/j.ejps.2016.10.036.CrossRefGoogle Scholar
  40. 40.
    Darwich AS, Margolskee A, Pepin X, Aarons L, Galetin A, Rostami-Hodjegan A, et al. IMI—oral biopharmaceutics tools project—evaluation of bottom-up PBPK prediction success. Part 3: identifying gaps in system parameters by analysing in silico performance across different compound classes. Eur J Pharm Sci: Off J Eur Fed Pharm Sci. 2017;96:626–42.  https://doi.org/10.1016/j.ejps.2016.09.037.CrossRefGoogle Scholar
  41. 41.
    Santos RM. Physicochemical principles of pharmacy. Am J Pharm Educ. 2006;70(5):122.CrossRefPubMedCentralGoogle Scholar
  42. 42.
    Lin Z, Zhou D, Hoag S, Qiu Y. Influence of drug properties and formulation on in vitro drug release and biowaiver regulation of oral extended release dosage forms. AAPS J. 2016;18(2):333–45.  https://doi.org/10.1208/s12248-015-9861-2.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Tres F, Patient JD, Williams PM, Treacher K, Booth J, Hughes LP, et al. Monitoring the dissolution mechanisms of amorphous bicalutamide solid dispersions via real-time Raman mapping. Mol Pharm. 2015;12(5):1512–22.  https://doi.org/10.1021/mp500829v.CrossRefPubMedGoogle Scholar
  44. 44.
    Zhao J, Koo O, Pan D, Wu Y, Morkhade D, Rana S, et al. The impact of disintegrant type, surfactant, and API properties on the processability and performance of roller compacted formulations of acetaminophen and aspirin. AAPS J. 2017;19(5):1387–95.  https://doi.org/10.1208/s12248-017-0104-6.CrossRefPubMedGoogle Scholar
  45. 45.
    Panda N, Venkateshwar Reddy A, Reddy G, Panda K. Effect of different grades of HPMC and Eudragit on drug release profile of doxofylline sustained release matrix tablets and IVIVC studies. 2015.Google Scholar
  46. 46.
    Narang AS, Desai D, Badawy S. Impact of excipient interactions on solid dosage form stability. Pharm Res. 2012;29(10):2660–83.  https://doi.org/10.1007/s11095-012-0782-9.CrossRefPubMedGoogle Scholar
  47. 47.
    Kambayashi A, Yasuji T, Dressman JB. Prediction of the precipitation profiles of weak base drugs in the small intestine using a simplified transfer (“dumping”) model coupled with in silico modeling and simulation approach. Eur J Pharm Biopharm: Off J Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV. 2016;103:95–103.  https://doi.org/10.1016/j.ejpb.2016.03.020.CrossRefGoogle Scholar
  48. 48.
    Sheng JJ, McNamara DP, Amidon GL. Toward an in vivo dissolution methodology: a comparison of phosphate and bicarbonate buffers. Mol Pharm. 2009;6(1):29–39.  https://doi.org/10.1021/mp800148u.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Dressman JB, Amidon GL, Reppas C, Shah VP. Dissolution testing as a prognostic tool for oral drug absorption: immediate release dosage forms. Pharm Res. 1998;15(1):11–22.CrossRefPubMedGoogle Scholar
  50. 50.
    Dahan AS, Amidon GL. Gastrointestinal dissolution and absorption of class II drugs. In: Waterbeemd DHvd, Testa PDB, editors. Drug bioavailability. 2009.Google Scholar
  51. 51.
    Phillips DJ, Pygall SR, Cooper VB, Mann JC. Overcoming sink limitations in dissolution testing: a review of traditional methods and the potential utility of biphasic systems. J Pharm Pharmacol. 2012;64(11):1549–59.  https://doi.org/10.1111/j.2042-7158.2012.01523.x.CrossRefPubMedGoogle Scholar
  52. 52.
    Li ZQ, He X, Gao X, Xu YY, Wang YF, Gu H, et al. Study on dissolution and absorption of four dosage forms of isosorbide mononitrate: level A in vitro-in vivo correlation. Europ J Pharm Biopharm: Off J Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV. 2011;79(2):364–71.  https://doi.org/10.1016/j.ejpb.2011.04.015.CrossRefGoogle Scholar
  53. 53.
    Li ZQ, Tian S, Gu H, Wu ZG, Nyagblordzro M, Feng G, et al. In vitro-in vivo predictive dissolution-permeation-absorption dynamics of highly permeable drug extended-release tablets via drug dissolution/absorption simulating system and pH alteration. AAPS PharmSciTech. 2018;19(4):1882–93.  https://doi.org/10.1208/s12249-018-0996-1.CrossRefPubMedGoogle Scholar
  54. 54.
    Liu W, He X, Li Z, Gao X, Ma Y, Xun M, et al. Development of a bionic system for the simultaneous prediction of the release/absorption characteristics of enteric-coated formulations. Pharm Res. 2013;30(2):596–605.  https://doi.org/10.1007/s11095-012-0905-3.CrossRefPubMedGoogle Scholar
  55. 55.
    Motz SA, Schaefer UF, Balbach S, Eichinger T, Lehr CM. Permeability assessment for solid oral drug formulations based on Caco-2 monolayer in combination with a flow through dissolution cell. Eur J Pharm Biopharm: Off J Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV. 2007;66(2):286–95.  https://doi.org/10.1016/j.ejpb.2006.10.015.CrossRefGoogle Scholar
  56. 56.
    Kataoka M, Masaoka Y, Yamazaki Y, Sakane T, Sezaki H, Yamashita S. In vitro system to evaluate oral absorption of poorly water-soluble drugs: simultaneous analysis on dissolution and permeation of drugs. Pharm Res. 2003;20(10):1674–80.  https://doi.org/10.1023/A:1026107906191.CrossRefPubMedGoogle Scholar
  57. 57.
    Guo M, Wang K, Qiao N, Yardley V, Li M. Investigating permeation behavior of flufenamic acid cocrystals using a dissolution and permeation system. Mol Pharm. 2018;15(9):4257–72.  https://doi.org/10.1021/acs.molpharmaceut.8b00670.CrossRefPubMedGoogle Scholar
  58. 58.
    Gantzsch SP, Kann B, Ofer-Glaessgen M, Loos P, Berchtold H, Balbach S, et al. Characterization and evaluation of a modified PVPA barrier in comparison to Caco-2 cell monolayers for combined dissolution and permeation testing. J Control Release: Off J Control Release Soc. 2014;175:79–86.  https://doi.org/10.1016/j.jconrel.2013.12.009.CrossRefGoogle Scholar
  59. 59.
    Fong SYK, Poulsen J, Brandl M, Bauer-Brandl A. A novel microdialysis-dissolution/permeation system for testing oral dosage forms: a proof-of-concept study. Eur J Pharm Sci: Off J Eur Fed Pharm Sci. 2017;96:154–63.  https://doi.org/10.1016/j.ejps.2016.09.018.CrossRefGoogle Scholar
  60. 60.
    Buch P, Langguth P, Kataoka M, Yamashita S. IVIVC in oral absorption for fenofibrate immediate release tablets using a dissolution/permeation system. J Pharm Sci. 2009;98(6):2001–9.  https://doi.org/10.1002/jps.21576.CrossRefPubMedGoogle Scholar
  61. 61.
    Miyaji Y, Fujii Y, Takeyama S, Kawai Y, Kataoka M, Takahashi M, et al. Advantage of the dissolution/permeation system for estimating oral absorption of drug candidates in the drug discovery stage. Mol Pharm. 2016;13(5):1564–74.  https://doi.org/10.1021/acs.molpharmaceut.6b00044.CrossRefPubMedGoogle Scholar
  62. 62.
    Mizoguchi M, Kataoka M, Yokoyama K, Aihara R, Wada K, Yamashita S. Application of an in vitro dissolution/permeation system to early screening of oral formulations of poorly soluble, weakly basic drugs containing an acidic pH-modifier. J Pharm Sci. 2018;107(9):2404–10.  https://doi.org/10.1016/j.xphs.2018.05.009.CrossRefPubMedGoogle Scholar
  63. 63.
    Takano R, Kataoka M, Yamashita S. Integrating drug permeability with dissolution profile to develop IVIVC. Biopharm Drug Dispos. 2012;33(7):354–65.  https://doi.org/10.1002/bdd.1792.CrossRefPubMedGoogle Scholar
  64. 64.
    Kataoka M, Masaoka Y, Sakuma S, Yamashita S. Effect of food intake on the oral absorption of poorly water-soluble drugs: in vitro assessment of drug dissolution and permeation assay system. J Pharm Sci. 2006;95(9):2051–61.  https://doi.org/10.1002/jps.20691.CrossRefPubMedGoogle Scholar
  65. 65.
    Charman WN, Rogge MC, Boddy AW, Berger BM. Effect of food and a monoglyceride emulsion formulation on danazol bioavailability. J Clin Pharmacol. 1993;33(4):381–6.CrossRefPubMedGoogle Scholar
  66. 66.
    Kataoka M, Yano K, Hamatsu Y, Masaoka Y, Sakuma S, Yamashita S. Assessment of absorption potential of poorly water-soluble drugs by using the dissolution/permeation system. Eur J Pharm Biopharm. 2013;85(3, Part B):1317–24.  https://doi.org/10.1016/j.ejpb.2013.06.018.CrossRefPubMedGoogle Scholar
  67. 67.
    Kataoka M, Sugano K, da Costa Mathews C, Wong JW, Jones KL, Masaoka Y, et al. Application of dissolution/permeation system for evaluation of formulation effect on oral absorption of poorly water-soluble drugs in drug development. Pharm Res. 2012;29(6):1485–94.  https://doi.org/10.1007/s11095-011-0623-2.CrossRefPubMedGoogle Scholar
  68. 68.
    Kataoka M, Fukahori M, Ikemura A, Kubota A, Higashino H, Sakuma S, et al. Effects of gastric pH on oral drug absorption: in vitro assessment using a dissolution/permeation system reflecting the gastric dissolution process. Eur J Pharm Biopharm: Off JArbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV. 2016;101:103–11.  https://doi.org/10.1016/j.ejpb.2016.02.002.CrossRefGoogle Scholar
  69. 69.
    Koplin S, Kumpugdee-Vollrath M, Bauer-Brandl A, Brandl M. Surfactants enhance recovery of poorly soluble drugs during microdialysis sampling: implications for in vitro dissolution-/permeation-studies. J Pharm Biomed Anal. 2017;145:586–92.  https://doi.org/10.1016/j.jpba.2017.07.022.CrossRefPubMedGoogle Scholar
  70. 70.
    Levy G, Leonards JR, Procknal JA. Development of in vitro dissolution tests which correlate quantitatively with dissolution rate-limited drug absorption in man. J Pharm Sci. 1965;54(12):1719–22.  https://doi.org/10.1002/jps.2600541204.CrossRefGoogle Scholar
  71. 71.
    Heigoldt U, Sommer F, Daniels R, Wagner K-G. Predicting in vivo absorption behavior of oral modified release dosage forms containing pH-dependent poorly soluble drugs using a novel pH-adjusted biphasic in vitro dissolution test. Eur J Pharm Biopharm. 2010;76(1):105–11.  https://doi.org/10.1016/j.ejpb.2010.05.006.CrossRefPubMedGoogle Scholar
  72. 72.
    Pestieau A, Evrard B. In vitro biphasic dissolution tests and their suitability for establishing in vitro-in vivo correlations: a historical review. Eur J Pharm Sci: Off J Eur Fed Pharm Sci. 2017;102:203–19.  https://doi.org/10.1016/j.ejps.2017.03.019.CrossRefGoogle Scholar
  73. 73.
    Chaudhary RS, SS Gangwal , Gupta VK , Shah Y, Jindal K, Khanna S. Dissolution system for nifedipine sustained release formulations. 1994.Google Scholar
  74. 74.
    Pillay V, Fassihi R. Evaluation and comparison of dissolution data derived from different modified release dosage forms: an alternative method. J Control Release: Off J Control Release Soc. 1998;55(1):45–55.CrossRefGoogle Scholar
  75. 75.
    Gabriels M, Plaizier-Vercammen J. Design of a dissolution system for the evaluation of the release rate characteristics of artemether and dihydroartemisinin from tablets. Int J Pharm. 2004;274(1–2):245–60.  https://doi.org/10.1016/j.ijpharm.2004.01.022.CrossRefPubMedGoogle Scholar
  76. 76.
    Kinget R, De Greef H. In vitro assessment of drug release from semi-solid lipid matrices. Eur J Pharm Sci. 1995;3(2):105–11.  https://doi.org/10.1016/0928-0987(94)00081-A.CrossRefGoogle Scholar
  77. 77.
    Ngo TH, Quintens I, Roets E, Declerck PJ, Hoogmartens J. Bioavailability of different artemisinin tablet formulations in rabbit plasma—correlation with results obtained by an in vitro dissolution method. J Pharm Biomed Anal. 1997;16(2):185–9.CrossRefPubMedGoogle Scholar
  78. 78.
    Stead JA, Freeman M, John EG, Ward GT, Whiting B. Ibuprofen tablets: dissolution and bioavailability studies. Int J Pharm. 1983;14(1):59–72.  https://doi.org/10.1016/0378-5173(83)90114-X.CrossRefGoogle Scholar
  79. 79.
    Grundy JS, Anderson KE, Rogers JA, Foster RT. Studies on dissolution testing of the nifedipine gastrointestinal therapeutic system. II. Improved in vitro-in vivo correlation using a two-phase dissolution test. J Control Release. 1997;48(1):9–17.  https://doi.org/10.1016/S0168-3659(97)01638-6.CrossRefGoogle Scholar
  80. 80.
    Vangani S, li X, Zhou P, Barrio M-A, Chiu R, Cauchon N et al. Dissolution of poorly water-soluble drugs in biphasic media using USP 4 and fiber optic system. 2009.Google Scholar
  81. 81.
    Al Durdunji A, AlKhatib HS, Al-Ghazawi M. Development of a biphasic dissolution test for deferasirox dispersible tablets and its application in establishing an in vitro-in vivo correlation. Eur J Pharm Biopharm: Off J Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV. 2016;102:9–18.  https://doi.org/10.1016/j.ejpb.2016.02.006.CrossRefGoogle Scholar
  82. 82.
    Shi Y, Erickson B, Jayasankar A, Lu L, Marsh K, Menon R, et al. Assessing supersaturation and its impact on in vivo bioavailability of a low-solubility compound ABT-072 with a dual pH, two-phase dissolution method. J Pharm Sci. 2016;105(9):2886–95.  https://doi.org/10.1016/j.xphs.2016.04.036.CrossRefPubMedGoogle Scholar
  83. 83.
    Xu H, Vela S, Shi Y, Marroum P, Gao P. In vitro characterization of ritonavir drug products and correlation to human in vivo performance. Mol Pharm. 2017;14(11):3801–14.  https://doi.org/10.1021/acs.molpharmaceut.7b00552.CrossRefPubMedGoogle Scholar
  84. 84.
    Xu H, Krakow S, Shi Y, Rosenberg J, Gao P. In vitro characterization of ritonavir formulations and correlation to in vivo performance in dogs. Eur J Pharm Sci: Off J Eur Fed Pharm Sci. 2018;115:286–95.  https://doi.org/10.1016/j.ejps.2018.01.026.CrossRefGoogle Scholar
  85. 85.
    Thiry J, Broze G, Pestieau A, Tatton AS, Baumans F, Damblon C, et al. Investigation of a suitable in vitro dissolution test for itraconazole-based solid dispersions. Eur J Pharm Sci. 2016;85:94–105.  https://doi.org/10.1016/j.ejps.2016.02.002.CrossRefPubMedGoogle Scholar
  86. 86.
    Locher K, Borghardt JM, Frank KJ, Kloft C, Wagner KG. Evolution of a mini-scale biphasic dissolution model: impact of model parameters on partitioning of dissolved API and modelling of in vivo-relevant kinetics. Eur J Pharm Biopharm: Off J Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV. 2016;105:166–75.  https://doi.org/10.1016/j.ejpb.2016.06.008.CrossRefGoogle Scholar
  87. 87.
    Pestieau A, Krier F, Brouwers A, Streel B, Evrard B. Selection of a discriminant and biorelevant in vitro dissolution test for the development of fenofibrate self-emulsifying lipid-based formulations. Eur J Pharm Sci: Off J Eur Fed Pharm Sci. 2016;92:212–9.  https://doi.org/10.1016/j.ejps.2016.04.038.CrossRefGoogle Scholar
  88. 88.
    Shi Y, Gao P, Gong Y, Ping H. Application of a biphasic test for characterization of in vitro drug release of immediate release formulations of celecoxib and its relevance to in vivo absorption. Mol Pharm. 2010;7(5):1458–65.  https://doi.org/10.1021/mp100114a.CrossRefPubMedGoogle Scholar
  89. 89.
    Frank KJ, Locher K, Zecevic DE, Fleth J, Wagner KG. In vivo predictive mini-scale dissolution for weak bases: advantages of pH-shift in combination with an absorptive compartment. Eur J Pharm Sci: Off J Eur Fed Pharm Sci. 2014;61:32–9.  https://doi.org/10.1016/j.ejps.2013.12.015.CrossRefGoogle Scholar
  90. 90.
    Pestieau A, Lebrun S, Cahay B, Brouwers A, Streel B, Cardot JM, et al. Evaluation of different in vitro dissolution tests based on level A in vitro-in vivo correlations for fenofibrate self-emulsifying lipid-based formulations. Eur J Pharm Biopharm: Off JArbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV. 2017;112:18–29.  https://doi.org/10.1016/j.ejpb.2016.10.030.CrossRefGoogle Scholar
  91. 91.
    Pestieau A, Krier F, Lebrun P, Brouwers A, Streel B, Evrard B. Optimization of a PGSS (particles from gas saturated solutions) process for a fenofibrate lipid-based solid dispersion formulation. Int J Pharm. 2015;485(1–2):295–305.  https://doi.org/10.1016/j.ijpharm.2015.03.027.CrossRefPubMedGoogle Scholar
  92. 92.
    Phillips DJ, Pygall S, Cooper BC. Mann J. Toward biorelevant dissolution: application of a biphasic dissolution model as a discriminating tool for HPMC matrices containing a model BCS class II drug. 2012.Google Scholar
  93. 93.
    Xu H, Shi Y, Vela S, Marroum P, Gao P. Developing quantitative in vitro-in vivo correlation for fenofibrate immediate-release formulations with the biphasic dissolution-partition test method. J Pharm Sci. 2018;107(1):476–87.  https://doi.org/10.1016/j.xphs.2017.06.018.CrossRefPubMedGoogle Scholar
  94. 94.
    Law D, Schmitt EA, Marsh KC, Everitt EA, Wang W, Fort JJ, et al. Ritonavir-PEG 8000 amorphous solid dispersions: in vitro and in vivo evaluations. J Pharm Sci. 2004;93(3):563–70.  https://doi.org/10.1002/jps.10566.CrossRefPubMedGoogle Scholar
  95. 95.
    Carino SR, Sperry DC, Hawley M. Relative bioavailability estimation of carbamazepine crystal forms using an artificial stomach-duodenum model. J Pharm Sci. 2006;95(1):116–25.  https://doi.org/10.1002/jps.20495.CrossRefPubMedGoogle Scholar
  96. 96.
    Carino SR, Sperry DC, Hawley M. Relative bioavailability of three different solid forms of PNU-141659 as determined with the artificial stomach-duodenum model. J Pharm Sci. 2010;99(9):3923–30.  https://doi.org/10.1002/jps.22236.CrossRefPubMedGoogle Scholar
  97. 97.
    Polster CS, Atassi F, Wu SJ, Sperry DC. Use of artificial stomach-duodenum model for investigation of dosing fluid effect on clinical trial variability. Mol Pharm. 2010;7(5):1533–8.  https://doi.org/10.1021/mp100116g.CrossRefPubMedGoogle Scholar
  98. 98.
    Polster CS, Wu SJ, Gueorguieva I, Sperry DC. Mechanism for enhanced absorption of a solid dispersion formulation of LY2300559 using the artificial stomach duodenum model. Mol Pharm. 2015;12(4):1131–40.  https://doi.org/10.1021/mp5006036.CrossRefPubMedGoogle Scholar
  99. 99.
    Bhattachar SN, Perkins EJ, Tan JS, Burns LJ. Effect of gastric pH on the pharmacokinetics of a BCS class II compound in dogs: utilization of an artificial stomach and duodenum dissolution model and GastroPlus, simulations to predict absorption. J Pharm Sci. 2011;100(11):4756–65.  https://doi.org/10.1002/jps.22669.CrossRefPubMedGoogle Scholar
  100. 100.
    Tsume Y, Amidon GL, Takeuchi S. Dissolution effect of gastric and intestinal pH for a BCS class II drug, pioglitazone: new in vitro dissolution system to predict in vivo dissolution. J Bioequivalence Bioavailability. 2013;5(6):224–7.  https://doi.org/10.4172/jbb.1000162.CrossRefGoogle Scholar
  101. 101.
    Matsui K, Tsume Y, Amidon GE, Amidon GL. In vitro dissolution of fluconazole and dipyridamole in gastrointestinal simulator (GIS), predicting in vivo dissolution and drug-drug interaction caused by acid-reducing agents. Mol Pharm. 2015;12(7):2418–28.  https://doi.org/10.1021/acs.molpharmaceut.5b00135.CrossRefPubMedGoogle Scholar
  102. 102.
    Matsui K, Tsume Y, Amidon GE, Amidon GL. The evaluation of in vitro drug dissolution of commercially available oral dosage forms for itraconazole in gastrointestinal simulator with biorelevant media. J Pharm Sci. 2016;105(9):2804–14.  https://doi.org/10.1016/j.xphs.2016.02.020.CrossRefPubMedGoogle Scholar
  103. 103.
    Christopher LJ, Cui D, Wu C, Luo R, Manning JA, Bonacorsi SJ, et al. Metabolism and disposition of dasatinib after oral administration to humans. Drug Metab Dispos:Biol Fate Chem. 2008;36(7):1357–64.  https://doi.org/10.1124/dmd.107.018267.CrossRefPubMedGoogle Scholar
  104. 104.
    Tsume Y, Igawa N, Drelich AJ, Amidon GE, Amidon GL. The combination of GIS and biphasic to better predict in vivo dissolution of BCS class IIb drugs, ketoconazole and raloxifene. J Pharm Sci. 2018;107(1):307–16.  https://doi.org/10.1016/j.xphs.2017.09.002.CrossRefPubMedGoogle Scholar
  105. 105.
    Matsui K, Tsume Y, Takeuchi S, Searls A, Amidon GL. Utilization of gastrointestinal simulator, an in vivo predictive dissolution methodology, coupled with computational approach to forecast oral absorption of dipyridamole. 2017;14(4):1181–9.  https://doi.org/10.1021/acs.molpharmaceut.6b01063.
  106. 106.
    Psachoulias D, Vertzoni M, Goumas K, Kalioras V, Beato S, Butler J, et al. Precipitation in and supersaturation of contents of the upper small intestine after administration of two weak bases to fasted adults. Pharm Res. 2011;28(12):3145–58.  https://doi.org/10.1007/s11095-011-0506-6.CrossRefPubMedGoogle Scholar
  107. 107.
    Russell TL, Berardi RR, Barnett JL, O’Sullivan TL, Wagner JG, Dressman JB. pH-related changes in the absorption of dipyridamole in the elderly. Pharm Res. 1994;11(1):136–43.CrossRefPubMedGoogle Scholar
  108. 108.
    Thuenemann EC, Mandalari G, Rich GT, Faulks RM. Dynamic gastric model (DGM). In: Verhoeckx K, CotterIván P, López-Expósito I, Kleiveland C, Lea T, Mackie A, et al., editors. The impact of food bioactives on health; 2018.Google Scholar
  109. 109.
    Marciani L, Gowland PA, Fillery-Travis A, Manoj P, Wright J, Smith A, et al. Assessment of antral grinding of a model solid meal with echo-planar imaging. Am J Physiol Gastrointest Liver Physiol. 2001;280(5):G844–9.  https://doi.org/10.1152/ajpgi.2001.280.5.G844.CrossRefPubMedGoogle Scholar
  110. 110.
    Vardakou M, Mercuri A, Barker SA, Craig DQM, Faulks RM, Wickham MSJ. Achieving antral grinding forces in biorelevant in vitro models: comparing the USP dissolution apparatus II and the dynamic gastric model with human in vivo data. AAPS PharmSciTech. 2011;12(2):620–6.  https://doi.org/10.1208/s12249-011-9616-z.CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Vardakou M, Mercuri A, Naylor TA, Rizzo D, Butler JM, Connolly PC, et al. Predicting the human in vivo performance of different oral capsule shell types using a novel in vitro dynamic gastric model. Int J Pharm. 2011;419(1–2):192–9.  https://doi.org/10.1016/j.ijpharm.2011.07.046.CrossRefPubMedGoogle Scholar
  112. 112.
    Mann JC, Pygall SR. A formulation case study comparing the dynamic gastric model with conventional dissolution methods. Dissolution Technologies. 2012;19(4):14–9.CrossRefGoogle Scholar
  113. 113.
    Chessa S, Huatan H, Levina M, Mehta RY, Ferrizzi D, Rajabi-Siahboomi AR. Application of the dynamic gastric model to evaluate the effect of food on the drug release characteristics of a hydrophilic matrix formulation. Int J Pharm. 2014;466(1–2):359–67.  https://doi.org/10.1016/j.ijpharm.2014.03.031.CrossRefPubMedGoogle Scholar
  114. 114.
    Mason LM, Chessa S, Huatan H, Storey DE, Gupta P, Burley J, et al. Use of the dynamic gastric model as a tool for investigating fed and fasted sensitivities of low polymer content hydrophilic matrix formulations. Int J Pharm. 2016;510(1):210–20.  https://doi.org/10.1016/j.ijpharm.2016.06.034.CrossRefPubMedGoogle Scholar
  115. 115.
    Minekus M, Marteau P, Havenaar R, Huis in 't Veld J. A multicompartmental dynamic computer-controlled model simulating the stomach and small intestine. ATLA Altern Lab Anim 1995.Google Scholar
  116. 116.
    Dickinson PA, Abu Rmaileh R, Ashworth L, Barker RA, Burke WM, Patterson CM, et al. An investigation into the utility of a multi-compartmental, dynamic, system of the upper gastrointestinal tract to support formulation development and establish bioequivalence of poorly soluble drugs. AAPS J. 2012;14(2):196–205.  https://doi.org/10.1208/s12248-012-9333-x.CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Cardot J-M, Beyssac E, Alric M. In vitro–in vivo correlation: importance of dissolution in IVIVC. Dissolution Technologies. 2007;14(1):15–9.CrossRefGoogle Scholar
  118. 118.
    Nimalaratne C, Savard P, Gauthier SF, Schieber A, Wu J. Bioaccessibility and digestive stability of carotenoids in cooked eggs studied using a dynamic in vitro gastrointestinal model. J Agric Food Chem. 2015;63(11):2956–62.  https://doi.org/10.1021/jf505615w.CrossRefPubMedGoogle Scholar
  119. 119.
    Van Loo-Bouwman CA, Naber THJ, Minekus M, van Breemen RB, Hulshof PJM, Schaafsma G. Food matrix effects on bioaccessibility of β-carotene can be measured in an in vitro gastrointestinal model. J Agric Food Chem. 2014;62(4):950–5.  https://doi.org/10.1021/jf403312v.CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Havenaar R, de Jong A, Koenen ME, van Bilsen J, Janssen AM, Labij E, et al. Digestibility of transglutaminase cross-linked caseinate versus native caseinate in an in vitro multicompartmental model simulating young child and adult gastrointestinal conditions. J Agric Food Chem. 2013;61(31):7636–44.  https://doi.org/10.1021/jf402824u.CrossRefPubMedGoogle Scholar
  121. 121.
    Tenjarla S, Romasanta V, Zeijdner E, Villa R, Moro L. Release of 5-aminosalicylate from an MMX mesalamine tablet during transit through a simulated gastrointestinal tract system. Adv Ther. 2007;24(4):826–40.CrossRefPubMedGoogle Scholar
  122. 122.
    Souliman S, Beyssac E, Cardot JM, Denis S, Alric M. Investigation of the biopharmaceutical behavior of theophylline hydrophilic matrix tablets using USP methods and an artificial digestive system. Drug Dev Ind Pharm. 2007;33(4):475–83.  https://doi.org/10.1080/03639040601128654.CrossRefPubMedGoogle Scholar
  123. 123.
    Brouwers J, Anneveld B, Goudappel GJ, Duchateau G, Annaert P, Augustijns P, et al. Food-dependent disintegration of immediate release fosamprenavir tablets: in vitro evaluation using magnetic resonance imaging and a dynamic gastrointestinal system. Eur J Pharm Biopharm: Off J Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV. 2011;77(2):313–9.  https://doi.org/10.1016/j.ejpb.2010.10.009.CrossRefGoogle Scholar
  124. 124.
    Reis PM, Raab TW, Chuat JY, Leser ME, Miller R, Watzke HJ, et al. Influence of surfactants on lipase fat digestion in a model gastro-intestinal system. Food Biophysics. 2008;3(4):370–81.  https://doi.org/10.1007/s11483-008-9091-6.CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Van Den Abeele J, Schilderink R, Schneider F, Mols R, Minekus M, Weitschies W, et al. Gastrointestinal and systemic disposition of diclofenac under fasted and fed state conditions supporting the evaluation of in vitro predictive tools. 2017;14(12):4220–32.  https://doi.org/10.1021/acs.molpharmaceut.7b00253.
  126. 126.
    Gulati S, Bonoan JA, Schesser K V, Arucan JF, Li X. Microfluidic measurements of drug dissolution using a quartz crystal microbalance. ASME 2016 14th Int. Conf. Nanochannels, Microchannels, Minichannels collocated with ASME 2016 Heat Transf. Summer Conf. ASME 2016 Fluids Eng. Div. Summer Meet. Am Soc Mech Eng. 2016. p. V001T10A001-V001T10A001.Google Scholar
  127. 127.
    Windbergs M, Weitz DA. Drug dissolution chip (DDC): a microfluidic approach for drug release. Small (Weinheim an der Bergstrasse, Germany). 2011;7(21):3011–5.  https://doi.org/10.1002/smll.201100520.CrossRefGoogle Scholar
  128. 128.
    Chi CW, Ahmed AR, Dereli-Korkut Z, Wang S. Microfluidic cell chips for high-throughput drug screening. Bioanalysis. 2016;8(9):921–37.  https://doi.org/10.4155/bio-2016-0028.CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Batchelor HK, Fotaki N, Klein S. Paediatric oral biopharmaceutics: key considerations and current challenges. Adv Drug Deliv Rev. 2014;73:102–26.  https://doi.org/10.1016/j.addr.2013.10.006.CrossRefPubMedGoogle Scholar
  130. 130.
    Karkossa F, Krueger A, Urbaniak J, Klein S. Simulating different dosing scenarios for a child-appropriate valproate ER formulation in a new pediatric two-stage dissolution model. AAPS PharmSciTech. 2017;18(2):309–16.  https://doi.org/10.1208/s12249-016-0671-3.CrossRefPubMedGoogle Scholar
  131. 131.
    Guidance for industry: extended release oral dosage forms: development, evaluation, and application of in vitro/in vivo correlations, (1997).Google Scholar
  132. 132.
    Nguyen MA, Flanagan T, Brewster M, Kesisoglou F, Beato S, Biewenga J, et al. A survey on IVIVC/IVIVR development in the pharmaceutical industry—past experience and current perspectives. Eur J Pharm Sci: Off J Eur Fed Pharm Sci. 2017;102:1–13.  https://doi.org/10.1016/j.ejps.2017.02.029.CrossRefGoogle Scholar
  133. 133.
    Dickinson PA, Lee WW, Stott PW, Townsend AI, Smart JP, Ghahramani P, et al. Clinical relevance of dissolution testing in quality by design. AAPS J. 2008;10(2):380–90.  https://doi.org/10.1208/s12248-008-9034-7.CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Polli JE, Cook JA, Davit BM, Dickinson PA, Argenti D, Barbour N, et al. Summary workshop report: facilitating oral product development and reducing regulatory burden through novel approaches to assess bioavailability/bioequivalence. AAPS J. 2012;14(3):627–38.  https://doi.org/10.1208/s12248-012-9376-z.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Pharmaceutics, Drug Discovery LabNational Institute of Pharmaceutical Education and Research (NIPER)GandhinagarIndia

Personalised recommendations