Skip to main content
Log in

Conformity Decisions Based on Measurement Uncertainty—a Case Study Applied to Agar Diffusion Microbiological Assay

  • Original Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Purpose

Antimicrobial activity of drug products containing antibiotics is often measured using microbiological assays. However, the high values of measurement uncertainty associated with the analytical results obtained from microbiological assays may be an issue to conformity decisions.

Methods

The aim of this work was to estimate the risk of false decisions in conformity assessment due to measurement uncertainty for the potency of apramycin in pharmaceutical drug products. Monte Carlo method (MCM) simulations were performed in order to estimate global consumers’ (Rc) and producers’ (Rp) risks using a Bayesian approach and specific consumers’ (Rc) and producers’ (Rp) risks using a frequentist approach.

Results

Despite of the high value of measurement uncertainty, Rc and Rp were found to be 0.0% and 0.3%, respectively. However, Rc and Rp were found to be high when the analytical result is close to the specification limits. Risk estimation using Bayesian approach is recommended to be applied by manufacturers, while frequentist approach may be an alternative to regulatory and third-party laboratories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. T. J. A. Pinto, T. M. Kaneko, A. F. Pinto, Controle biológico de qualidade de produtos farmacêuticos, correlatos, cosméticos, 4ª ed., São Paulo: Manole. 2014.

  2. Agência Nacional de Vigilância Sanitária (ANVISA). Farmacopéia Brasileira 5ª Edição. In: Brasília; 2010.

    Google Scholar 

  3. United States Pharmacopeial Convention, “<81> Antibiotics - Microbial tests,” em United States Pharmacopeia (USP 40), Rockville. 2017.

  4. Lazo JS, Bruton LL, Parker KL. As bases farmacológicas da terapêutica. Rio de Janeiro, RJ: McGraw-Hill; 2006.

    Google Scholar 

  5. Walton JR. Apramycin, a new aminocyclitol antibiotic. Antimicrob Chemother. 1978;4:309–13.

    Article  CAS  Google Scholar 

  6. Tatsuta K, Akimoto K, Takahashi H, Hamatsu T, Kinoshita M. Total synthesis of aminoglycoside antibiotics, apramycin and saccharocin (KA-5685). Bull Chem Soc Jpn. 1984;57:529–38.

    Article  CAS  Google Scholar 

  7. Antunes EA, Lourenço FR, Pinto TA. Determination of apramycin in oral soluble powder by a HPLC method using pre-column derivatization with o-phthalaldehyde and UV detection. Braz J Pharm Sci. 2011;47(2):261–8.

    Article  CAS  Google Scholar 

  8. Lourenço FR. Antibiotic microbial assay using kinetic-reading microplate system. Braz J Pharm Sci. 2011;47(3):573–84.

    Article  Google Scholar 

  9. Lourenço FR, Barbosa EA, Pinto TA. Microbiological assay for apramycin soluble powder. Lat Am J Pharm. 2011;30(3):554–7.

    Google Scholar 

  10. Stead DA. Current methodologies for the analysis of aminoglycosides. J Chromatogr B: Biomed Sci Appl. 2000;747(1–2):69–93.

    Article  CAS  Google Scholar 

  11. Saviano A, Lourenço F. Uncertainty evaluation for determining linezolid in injectable solution by UV spectrophotometry. Measurement. 2013;46:3924–8.

    Article  Google Scholar 

  12. Saviano A, Francisco F, Lourenço F. Rational development and validation of a new microbiological assay for linezolid and its measurement uncertainty. Talanta. 2014;127:225–9.

    Article  CAS  Google Scholar 

  13. Saviano A, Madruga R, Lourenço F. Measurement uncertainty of a UPLC stability indicating method for determination of linezolid in dosage forms. Measurement. 2015;59:1–8.

    Article  Google Scholar 

  14. Saviano A, Lourenço F. Measurement uncertainty estimation based on multiple regression analysis (MRA) and Monte Carlo (MC) simulations - application to agar diffusion method. Measurement. 2018;115:269–78.

    Article  Google Scholar 

  15. Pendrill L. Using measurement uncertainty in decision-making and conformity assessment. Metrologia. 2014;51:206–18.

    Article  Google Scholar 

  16. Pereira P, Magnusson B, Theodorsson E, Westgard J, Encarnação P. Measurement uncertainty as a tool for evaluating the 'grey zone' to reduce the false negatives in immunochemical screening of blood donors for infectious diseases. Accred Qual Assur. 2016;21:25–32.

    Article  CAS  Google Scholar 

  17. A. Ribeiro, M. Gölze, EUROLAB technical report 1/2017 "Decision rules applied to conformity assessment", 2017.

    Google Scholar 

  18. S.R.R. Ellison, A. Williams (Eds.), EURACHEM/CITAC guide: use of uncertainty information in compliance assessment, 2017.

    Google Scholar 

  19. Kuselman I, Pennecchi F, da Silva R, Hibbert D. Conformity assessment of multicomponent materials or objects: risk of false decisions due to measurement uncertainty—a case study of denatured alcohols. Talanta. 2017;164:189–95.

    Article  CAS  Google Scholar 

  20. Kuselman I, Pennecchi F, da Silva R, Hibbert D. Risk of false decision on conformity of a multicomponent material when test results of the components' content are correlated. Talanta. 2017;174:789–96.

    Article  CAS  Google Scholar 

  21. Pennecchi F, Kuselman I, da Silva R, Hibbert D. Risk of a false decision on conformity of an environmental compartment due to measurement uncertainty of concentrations of two or more pollutants. Chemosphere. 2018;202:165–76.

    Article  CAS  Google Scholar 

  22. Lourenço FR, Bettencourt da Silva RJN. Risk of false conformity decisions of multicomponent items controlled by correlated measurement results due to the sharing of analytical steps. Talanta. 2019;196:174–81.

    Article  CAS  Google Scholar 

  23. Lourenço FR. Uncertainty measurement of microbiological assay for apramycin soluble powder. Lat Am J Pharm. 2013;32(5):640–5.

    Google Scholar 

  24. Ellison SLR, Williams A, editors. Eurachem/CITAC guide: Quantifying uncertainty in analytical measurement. Rome: EURACHEM/CITAC; 2012.

  25. Lourenço FR, Kaneko TM, Pinto TA. Evaluating measurement uncertainty in the microbiological assay of vancomycin from methodology validation data. J AOAC Int. 2007;90(5):1383–6.

    Article  Google Scholar 

  26. Bettencourt da Silva R, Williams A. Eurachem/CITAC guide: setting and using target uncertainty in chemical measurement. 2015.

  27. Separovic L, Saviano A, Lourenço F. Using measurement uncertainty to assess the fitness for purpose of an HPLC analytical method in the pharmaceutical industry. Measurement. 2018;119:41–5.

    Article  Google Scholar 

  28. International Organizatio for Standardization, ISO/IEC 17025:2017 - General requirements for the competence of testing and calibration laboratories. 2017.

  29. Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta. 2008;76(5):965–77.

    Article  CAS  Google Scholar 

  30. S. N. Politis, P. Colombo, G. Colombo, D. M. Rekkas, Design of experiments (DoE) in pharmaceutical development. Drug Dev Ind Pharm, vol. 43, n° 6, pp. 889–901, 2017.

  31. Fukuda IM, Pinto CFF, Moreira C d S, Saviano AM, Lourenço FR. Design of Experiments (DoE) applied to pharmaceutical and analytical Quality by Design (QbD). Braz J Pharm Sci. 2018;54(Special):63–78.

    Google Scholar 

Download references

Funding

This study was funded by FAPESP - Fundação de Amparo à Pesquisa do Estado de São Paulo (2016/04100-8 and 2017/04539-2) and CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felipe Rebello Lourenço.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Separovic, L., de Godoy Bertanha, M.L., Saviano, A.M. et al. Conformity Decisions Based on Measurement Uncertainty—a Case Study Applied to Agar Diffusion Microbiological Assay. J Pharm Innov 15, 110–115 (2020). https://doi.org/10.1007/s12247-019-09374-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-019-09374-8

Keywords

Navigation