Advertisement

Journal of Pharmaceutical Innovation

, Volume 13, Issue 3, pp 197–212 | Cite as

A Review on Solubility Enhancement of Carvedilol—a BCS Class II Drug

  • Gasper J. Fernandes
  • Lalit Kumar
  • Kartik Sharma
  • Rupa Tunge
  • Mahalaxmi Rathnanand
Review Article
  • 167 Downloads

Abstract

Purpose

Carvedilol is a third generation non-cardioselective β-blocker used in the treatment of hypertension and demonstrated a potential in the treatment of cardiovascular diseases such as myocardial infarction and arrhythmias. For any drug to be therapeutically effective, it must enter the systemic circulation and to do so, it should have an optimum aqueous solubility at the site of absorption which is a major hurdle to overcome by a formulation scientist. Carvedilol belongs to BCS (biopharmaceutical classification system) class II drugs, thus having low solubility and poor bioavailability (around 25%). Hence, the purpose of this review is to elaborate on several approaches to increase the solubility, dissolution, and bioavailability of carvedilol.

Methods

Micronization, solid dispersions, cyclodextrin inclusion complex, hydrotropy, nanoformulation which include nanocrystals, nanosuspension, nanoemulsions, dendrimers, and polymeric nanoparticles. It also includes methods that have not been used on carvedilol such as cocrystallization and coamorphous technology.

Results

Several approaches have successfully increased solubility and bioavailability of carvedilol and several other unexplored methods which have the potential to improve the aqueous solubility of carvedilol but have not been applied till date have also been discussed in the review.

Conclusion

There are various approaches explored to increase the solubility of carvedilol with every technique having certain advantages and drawbacks. Micronization and nanoformulations (dendrimers, nanoemulsion, nanosuspension, nanocrystals, polymeric nanoparticles) are the most widely used technique for solubility enhancement of carvedilol on laboratory scale due to higher solubility and dissolution rate but they have poor industrial applicability due to difficulty in scale-up and low yield. Efforts are being made to carry out different solubility enhancement techniques with good industrial applicability for carvedilol, e.g., cocrystals. Cocrystals and coamorphous approach for poorly soluble drugs having similar properties to carvedilol have shown good solubility, dissolution, and bioavailability compared to few techniques discussed in this review, and are being widely explored to overcome the drawbacks associated with its method of preparation by carrying out certain advancements (e.g., hot melt extrusion and sonocrystallization) to produce carvedilol cocrystals and coamorphous compound with unique properties in future development.

Keywords

Solubility enhancement Carvedilol Solid dispersion Cyclodextrin inclusion complex Nanosuspension Nanoemulsion Cocrystals 

References

  1. 1.
    Frishman WH, Henderson LS, Lukas MA. Controlled-release carvedilol in the management of systemic hypertension and myocardial dysfunction. Vasc Health Risk Manag. 2008;4(6):1387.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Freemantle N, Cleland J, Young P, Mason J, Harrison J. β Blockade after myocardial infarction: systematic review and meta regression analysis. BMJ. 1999;318(7200):1730–7.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Savjani KT, Gajjar AK, Savjani JK. Drug solubility: importance and enhancement techniques. ISRN Pharm 2012;2012.Google Scholar
  4. 4.
    Kalimuthu S, Yadav AV. Formulation and evaluation of carvedilol loaded eudragit E100 nanoparticles. Int J PharmTech Res. 2009;1:179–83.Google Scholar
  5. 5.
    Jamakandi VG. Formulation and evaluation of immediate release tablet of carvedilol using liquisolid compacts technique for solubility enhancement. Asian J Pharm (AJP). 2016;10(03).Google Scholar
  6. 6.
    Campoli RD, Sorkin E. Carvedilol: a review of its pharmacodynamic and pharmacokinetic properties and therapeutic efficacy. Drugs. 1993;45:232–58.Google Scholar
  7. 7.
    Drugbank.ca. Carvedilol—DrugBank. 2017. [online] Available at: https://www.drugbank.ca/drugs/DB01136#pharmacology [Accessed 24 Jul 2017].
  8. 8.
    Arzani G, Haeri A, Daeihamed M, Bakhtiari-Kaboutaraki H, Dadashzadeh S. Niosomal carriers enhance oral bioavailability of carvedilol: effects of bile salt-enriched vesicles and carrier surface charge. Int J Nanomedicine. 2015;10:4797.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Zoghbi A, Wang B. Carvedilol solubility enhancement by inclusion complexation and solid dispersion. J Drug Deliv Ther. 2015;5(2):1–8.Google Scholar
  10. 10.
    Nollenberger, T. Using polymers to enhance solubility of poorly soluble drugs. 2017 [online] Pharmtech.com. Available at: http://www.pharmtech.com/using-polymers-enhance-solubility-poorly-soluble-drugs [Accessed 25 Jul 2017].
  11. 11.
    Chu K, Lee E, Jeong S, Park E. Effect of particle size on the dissolution behaviors of poorly water-soluble drugs. Arch Pharm Res. 2012;35(7):1187–95.CrossRefPubMedGoogle Scholar
  12. 12.
    Chatterjee B, Pal TK. Development and in vitro evaluation of micronized sustained release matrix tablet of carvedilol. Int J Pharm Sci Res. 2010;1:96–102.Google Scholar
  13. 13.
    Mogal SA, Gurjar PN, Yamgar DS, Kamod AC. Solid dispersion technique for improving solubility of some poorly soluble drugs. Pharm Lett. 2012;4(5):1574–86.Google Scholar
  14. 14.
    Gala U, Pham H, Chauhan H. Pharmaceutical applications of eutectic mixtures. J Dev Drugs. 2013;2:1–2.Google Scholar
  15. 15.
    Chiou WL, Riegelman S. Pharmaceutical applications of solid dispersion systems. J Pharm Sci. 1971;60(9):1281–302.CrossRefPubMedGoogle Scholar
  16. 16.
    Sharma A, Jain CP, Tanwar YS. Preparation and characterization of solid dispersions of carvedilol with poloxamer 188. J Chil Chem Soc. 2013;58(1):1553–7.CrossRefGoogle Scholar
  17. 17.
    Planinšek O, Kovačič B, Vrečer F. Carvedilol dissolution improvement by preparation of solid dispersions with porous silica. Int J Pharm. 2011;406(1):41–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Ayoub M, Hasan A, El Nahas H, Ghazy FE. Enhancing oral bioavailability of carvedilol using solid dispersion technique. Int J Pharm Pharm Sci. 2016;8(7):193–9.Google Scholar
  19. 19.
    Davis ME, Brewster ME. Cyclodextrin-based pharmaceutics: past, present and future. Nat Rev Drug Discov. 2004;3(12):1023.CrossRefPubMedGoogle Scholar
  20. 20.
    Nekkanti V, Muniyappan T, Karatgi P, Hari MS, Marella S, Pillai R. Spray-drying process optimization for manufacture of drug–cyclodextrin complex powder using design of experiments. Drug Dev Ind Pharm. 2009;35(10):1219–29.CrossRefPubMedGoogle Scholar
  21. 21.
    Wen X, Tan F, Jing Z, Liu Z. Preparation and study the 1: 2 inclusion complexes of carvedilol with β-cyclodextrin. J Pharm Biomed Anal. 2004;34(3):517–23.CrossRefPubMedGoogle Scholar
  22. 22.
    Moriwaki C, Costa GL, Ferracini CN, de Moraes FF, Zanin GM, Pineda EA, et al. Enhancement of solubility of albendazole by complexation with β-cyclodextrin. Braz J Chem Eng. 2008;25(2):255–67.CrossRefGoogle Scholar
  23. 23.
    Chaudhary VB, Patel JK. Cyclodextrin inclusion complex to enhance solubility of poorly water-soluble drugs: a review. Int J Pharm Sci Res. 2013;4(1):68.Google Scholar
  24. 24.
    Vemula VR, Lagishetty V, Lingala S. Solubility enhancement techniques. Int J Pharm Sci Rev Res. 2010;5(1):41–51.Google Scholar
  25. 25.
    Chowdary KP, Kumar AP. Recent research on formulation development of BCS class II drugs—a review. Int Res J Pharm Appl Sci. 2013;3:173–81.Google Scholar
  26. 26.
    Perrut M, Jung J, Leboeuf F. Enhancement of dissolution rate of poorly-soluble active ingredients by supercritical fluid processes: Part I: Micronization of neat particles. Int J Pharm. 2005;288(1):3–10.CrossRefPubMedGoogle Scholar
  27. 27.
    Patil JS, Kadam DV, Marapur SC, Kamalapur MV. Inclusion complex system: a novel technique to improve the solubility and bioavailability of poorly soluble drugs: a review. Int J Pharm Sci Rev Res. 2010;2(2):29–33.Google Scholar
  28. 28.
    Sapana BB, Shashikant DN. Preparation and characterisation of [beta]-cyclodextrin nebivolol inclusion complex. Int J Pharm Sci Res. 2015;6(5):2205.Google Scholar
  29. 29.
    Hirlekar R, Kadam V. Preparation and characterization of inclusion complexes of carvedilol with methyl-β-cyclodextrin. J Incl Phenom Macrocycl Chem. 2009;63(3–4):219–24.CrossRefGoogle Scholar
  30. 30.
    Nidhi K, Indrajeet S, Khushboo M, Gauri K, Sen DJ. Hydrotropy: a promising tool for solubility enhancement: a review. Int J Drug Dev Res. 2011;Google Scholar
  31. 31.
    Chikhle H, Pandey V, Ganeshpurkar A, Dubey N, Bansal D. Solubility enhancement of carvedilol using mixed hydrotropy. Asian J Biomater Res. 2016;2(2):62–5.Google Scholar
  32. 32.
    Yadollahi R, Vasilev K, Simovic S. Nanosuspension technologies for delivery of poorly soluble drugs. J Nanomater. 2015;2015:1–13.CrossRefGoogle Scholar
  33. 33.
    Junghanns JU, Müller RH. Nanocrystal technology, drug delivery and clinical applications. Int J Nanomedicine. 2008;3(3):295.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Junyaprasert VB, Morakul B. Nanocrystals for enhancement of oral bioavailability of poorly water-soluble drugs. Asian J Pharm Sci. 2015;10(1):13–23.CrossRefGoogle Scholar
  35. 35.
    Chi Lip Kwok P, Chan HK. Nanotechnology versus other techniques in improving drug dissolution. Curr Pharm Des. 2014;20(3):474–82.CrossRefGoogle Scholar
  36. 36.
    Gao Y, Wang J, Wang Y, Yin Q, Glennon B, Zhong J, et al. Crystallization methods for preparation of nanocrystals for drug delivery system. Curr Pharm Des. 2015;21(22):3131–9.CrossRefPubMedGoogle Scholar
  37. 37.
    Kulkarni SA, Myerson AS. Methods for crystals preparation. In Engineering Crystallography: From Molecule to Crystal to Functional Form 2017 (pp. 275–287). Springer, Dordrecht.Google Scholar
  38. 38.
    Gulsun T, Gursoy RN, Levent O. Nanocrystal technology for oral delivery of poorly water-soluble drugs. FABAD J Pharm Sci. 2009;7:34(5).Google Scholar
  39. 39.
    Janakiraman AK, Sumathi B, Saleem TM, Ramkanth S, Kumar PO, Venkatachalam G. Design and evaluation of carvedilol nanocrystals sustained release tablets. J Appl Pharm Sci. 2017;7(04):061–8.Google Scholar
  40. 40.
    Liu D, Pan H, He F, Wang X, Li J, Yang X, et al. Effect of particle size on oral absorption of carvedilol nanosuspensions: in vitro and in vivo evaluation. Int J Nanomedicine. 2015;10:6425.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Patil SK, Wagh KS, Parik VB, Akarte AM, Baviskar DT. Strategies for solubility enhancement of poorly soluble drugs. Int J Pharm Sci Rev Res. 2011;8(2):74–80.Google Scholar
  42. 42.
    Chung NO, Lee MK, Lee J. Mechanism of freeze-drying drug nanosuspensions. Int J Pharm. 2012;437(1):42–50.CrossRefPubMedGoogle Scholar
  43. 43.
    Bouchemal K, Briançon S, Perrier E, Fessi H. Nano-emulsion formulation using spontaneous emulsification: solvent, oil and surfactant optimisation. Int J Pharm. 2004;280(1):241–51.CrossRefPubMedGoogle Scholar
  44. 44.
    Jasmina H, Džana O, Alisa E, Edina V, Ognjenka R. Preparation of nanoemulsions by high-energy and low energy emulsification methods. InCMBEBIH 2017 2017 (pp. 317–322). Springer, Singapore.Google Scholar
  45. 45.
    Chidi E, Ikenna NE, Zainab A, John F. Universal Journal of Pharmaceutical Research Development And Evaluation Of Nanoemulsion Formulations For Improved Oral Delivery Of Carvedilol. Univ J Pharm Res. 2017;2(1):2456–8058.Google Scholar
  46. 46.
    Madaan K, Kumar S, Poonia N, Lather V, Pandita D. Dendrimers in drug delivery and targeting: drug-dendrimer interactions and toxicity issues. J Pharm Bioallied Sci. 2014;6(3):139.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Sharma M, Sharma R, Jain D. Nanotechnology based approaches for enhancing oral bioavailability of poorly water soluble antihypertensive drugs. Scientifica. 2016;2016:1–11.CrossRefGoogle Scholar
  48. 48.
    Hart ML, Do DP, Ansari RA, Rizvi SA. Brief overview of various approaches to enhance drug solubility. J Dev Drugs. 2013;2(3):100011.CrossRefGoogle Scholar
  49. 49.
    Ornelas C, Pennell R, Liebes LF, Weck M. Construction of a well-defined multifunctional dendrimer for theranostics. Org Lett. 2011;13(5):976–9.CrossRefPubMedGoogle Scholar
  50. 50.
    Zheng X, Wang T, Jiang H, Li Y, Jiang T, Zhang J, et al. Incorporation of carvedilol into PAMAM-functionalized MWNTs as a sustained drug delivery system for enhanced dissolution and drug-loading capacity. Asian J Pharm Sci. 2013;8(5):278–86.CrossRefGoogle Scholar
  51. 51.
    Mohanraj VJ, Chen Y. Nanoparticles—a review. Trop J Pharm Res. 2006;5(1):561–73.Google Scholar
  52. 52.
    Nagavarma BV, Yadav HK, Ayaz A, Vasudha LS, Shivakumar HG. Different techniques for preparation of polymeric nanoparticles—a review. Asian J Pharm Clin Res. 2012;5(3):16–23.Google Scholar
  53. 53.
    Khan S, Ali W, Rahman NU, Shah SM, Khan J, Shah SM, et al. Self-assembled biodegradable polymeric nanoparticles with improved solubility of carvedilol: preparation, characterisation and in vitro release kinetics. Int J Pharm Sci Res. 2016;7(10):3971.Google Scholar
  54. 54.
    Sanjay AN, Manohar SD, Bhanudas SR. Pharmaceutical cocrystallization: a review. J Adv Pharm Educ Res 2014;4(4).Google Scholar
  55. 55.
    Patole T, Deshpande A. Co-crystallization—a technique for solubility enhancement. Int J Pharm Sci Res. 2014;5(9):3566.Google Scholar
  56. 56.
    Jampílek J, Dohnal J. Investigation of carbohydrates and their derivatives as crystallization modifiers. InCarbohydrates-Comprehensive Studies on Glycobiology and Glycotechnology 2012. InTech.Google Scholar
  57. 57.
    Kotak U, Prajapati V, Solanki H, Jani G, Jha P. Co-crystallization technique its rationale and recent progress. World J Pharm Pharm Sci. 2015;4(4):1484–508.Google Scholar
  58. 58.
    Prasad RV, Rakesh MG, Jyotsna RM, Mangesh ST, Anita PS, Mayur PK. Pharmaceutical cocrystallization: a review. Int J Pharm Chem Sci. 2012;1(3):725–36.Google Scholar
  59. 59.
    Mounika P, Raj SV, Divya G, Gowramma A, Vijayamma G, Rangampet A, et al. Preparation and characterization of novel co-crystal forms of fexofenadine. Int J Innov Pharm Res. 2015;6(1):458–63.Google Scholar
  60. 60.
    Yamamoto K, Tsutsumi S, Ikeda Y. Establishment of cocrystal cocktail grinding method for rational screening of pharmaceutical cocrystals. Int J Pharm. 2012;437(1):162–71.CrossRefPubMedGoogle Scholar
  61. 61.
    (23b) Slurry crystallization of water-insoluble drug substance—overcoming challenges in solubility and miscibility requirements for solvents and anti-solvents | AIChE Academy [Internet]. Aiche.org. 2017 [Accesed on 7 Oct 2017]. Available from: https://www.aiche.org/conferences/aiche-annual-meeting/2012/proceeding/paper/23b-slurry-crystallization-water-insoluble-drug-substance-overcoming-challenges-solubility-and
  62. 62.
    Shewale S, Shete AS, Doijad RC, Kadam SS, Patil VA, Yadav AV. Formulation and solid-state characterization of nicotinamide-based co-crystals of fenofibrate. Indian J Pharm Sci. 2015;77(3):328.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Li S, Yu T, Tian Y, McCoy CP, Jones DS, Andrews GP. Mechanochemical synthesis of pharmaceutical cocrystal suspensions via hot melt extrusion: feasibility studies and physicochemical characterization. Mol Pharm. 2016;13(9):3054–68.CrossRefPubMedGoogle Scholar
  64. 64.
    Dhumal RS, Kelly AL, York P, Coates PD, Paradkar A. Cocrystallization and simultaneous agglomeration using hot melt extrusion. Pharm Res. 2010;27(12):2725–33.CrossRefPubMedGoogle Scholar
  65. 65.
    Yadav S, Gupta PC, Sharma N, Kumar J. Cocrystals: an alternative approach to modify physicochemical properties of drugs. Int J Pharm Chem Biol Sci. 2015;5(2).Google Scholar
  66. 66.
    Sanjay AN, Manohar SD, Bhanudas SR. Pharmaceutical cocrystallization: a review. J Adv Pharm Educ Res 2014;4(4).Google Scholar
  67. 67.
    Aher S, Dhumal R, Mahadik K, Paradkar A, York P. Ultrasound assisted cocrystallization from solution (USSC) containing a non-congruently soluble cocrystal component pair: caffeine/maleic acid. Eur J Pharm Sci. 2010;41(5):597–602.CrossRefPubMedGoogle Scholar
  68. 68.
    Dengale SJ, Grohganz H, Rades T, Löbmann K. Recent advances in co-amorphous drug formulations. Adv Drug Deliv Rev. 2016;100:116–25.CrossRefPubMedGoogle Scholar
  69. 69.
    Jensen KT, Löbmann K, Rades T, Grohganz H. Improving co-amorphous drug formulations by the addition of the highly water soluble amino acid, proline. Pharmaceutics. 2014;6(3):416–35.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Chein W, Lamey K, Malofiy J, Oh C. Carvedilol formulations. WO 2003092625 A2, 2003Google Scholar
  71. 71.
    Oh C, Oh Choon K. Novel composition of carvedilol. United States patent application US 10/491,195. 2004 Oct 1.Google Scholar
  72. 72.
    Liversidge G, Jenkins S. Carvedilol phosphate solid dispersion. CA 2643492 A1, 2007.Google Scholar
  73. 73.
    Gary Liversidge, Scott Jenkins. Nanoparticle formulation of carvedilol. EP1996161A2, 2008Google Scholar
  74. 74.
    Parthasaradhi R, Rathnakar R, Muralidhara R, Subash C, Vamsi K. Carvedilol phosphate solid dispersion. WO 2014108921 A3, 2015.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Gasper J. Fernandes
    • 1
  • Lalit Kumar
    • 1
  • Kartik Sharma
    • 1
  • Rupa Tunge
    • 1
  • Mahalaxmi Rathnanand
    • 1
  1. 1.Department of Pharmaceutics, Manipal College of Pharmaceutical ScienceManipal Academy of Higher EducationManipalIndia

Personalised recommendations