Advertisement

Journal of Pharmaceutical Innovation

, Volume 12, Issue 4, pp 309–318 | Cite as

Probing Influence of Solvent on Polymorphic Transformation of Carbamazepine Using Electrospray Technology

  • Sharvil PatilEmail author
  • Kumudni Xalxo
  • Kakasaheb Mahadik
Original Article
  • 143 Downloads

Abstract

Purpose

The objective of the current work was to investigate the influence of electrospray technology using various solvents on polymorphic transformations of carbamazepine (CBZ). CBZ was taken as a model drug for electrospray crystallization owing to its well investigated polymorphic forms.

Methods

Saturated CBZ solutions (methanol, ethanol, and 2-propanol) were electrosprayed at 20 kV to obtain CBZ crystals. The electrosprayed crystals from methanol (MCBZ), ethanol (ECBZ), and 2-propanol (PCBZ) were characterized by powder X-ray diffractometry, Fourier-transform infrared spectroscopy, differential scanning calorimetry, scanning electron microscopy, equilibrium solubility, intrinsic dissolution rate, and stability study.

Results

MCBZ exhibited mixture of form I and II of CBZ, whereas mixture of form I, II, and III of CBZ was observed in case of ECBZ. Further, PCBZ contained mixture of form II, III, and IV of CBZ. The order in which reduction in saturation solubility and intrinsic dissolution rate was observed, it can be represented as MCBZ > PCBZ > ECBZ > unprocessed CBZ. Electrospray technology induced polymorphic transformations in CBZ crystals. The said polymorphic transformations were influenced by solvent properties along with an electric charge.

Conclusion

Thus electrospray crystallization, a continuous pharmaceutical manufacturing technique, can serve as an alternative for crystallization of API with an ability to modify their physicochemical properties.

Keywords

Carbamazepine Electrospray crystallization Polymorphs Intrinsic dissolution Crystals 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Gosselin P, Thibert R, Preda M, McMullen JN. Polymorphic properties of micronized carbamazepine produced by RESS. Int J Pharm. 2003;252:225–33.CrossRefPubMedGoogle Scholar
  2. 2.
    Suryanarayanan R, Byrn S. Characterization of the solid state. Adv Drug Deliv Rev. 2001;48:136.CrossRefGoogle Scholar
  3. 3.
    Grant D. Theory and origin of polymorphism. In: Brittain HG, editor. Polymorphism in Pharmaceutical solids, vol. 95. New York: Marcel Dekker; 1999. p. 1–33.Google Scholar
  4. 4.
    Singhal D, Curatolo W. Drug polymorphism and dosage form design:a practical perspective. Adv Drug Del Rev. 2004;56:335–47.CrossRefGoogle Scholar
  5. 5.
    Gu C, Li H, Gandhi R, Raghavan K. Grouping solvents by statistical analysis of solvent property parameters: implication to polymorph screening. Int J Pharm. 2004;283:117–25.CrossRefPubMedGoogle Scholar
  6. 6.
    Eerdenbrugh B, Taylor L. Small scale screening to determine the ability of different polymers to inhibit drug crystallization upon rapid solvent evaporation. Mol Pharm. 2010;7(4):1328–37.CrossRefPubMedGoogle Scholar
  7. 7.
    Maheshwari M, Ketkar A, Chauhan B, Patil VB, Paradkar AR. Preparation and characterization of ibuprofen–cetyl alcohol beads by melt solidification technique: effect of variables. Int J Pharm. 2003;261:57–67.CrossRefPubMedGoogle Scholar
  8. 8.
    Maheshwari M, Jahagirdar H, Paradkar A. Melt sonocrystallization of ibuprofen: effect on crystal properties. Eur J Pharm Sci. 2005;25:41–8.CrossRefGoogle Scholar
  9. 9.
    Minamisono T, Takiyama H. Control of polymorphism in the anti-solvent crystallization with a particular temperature profile. J Cryst Growth. 2013;362:135–9.CrossRefGoogle Scholar
  10. 10.
    Dhumal R, Biradar S, Paradkar A, York P. Ultrasound assisted engineering of lactose crystals. Pharm Res. 2008;25(12):2835–44.CrossRefPubMedGoogle Scholar
  11. 11.
    Morissette S, Almarsson O, Peterson M, et al. High-throughput crystallization: polymorphs, salts, co-crystals and solvates of pharmaceutical solids. Adv Drug Del Rev. 2004;56:275–300.CrossRefGoogle Scholar
  12. 12.
    Hilfiker R, Berghausen J, Blatter F, Burkhard A, De Paul S, Freiermuth B, et al. Polymorphism—integrated approach from high-throughput screening to crystallization optimization. J Therm Anal Calorim. 2003;73:429–40.CrossRefGoogle Scholar
  13. 13.
    Radacsi N, Ambrus R, Szunyogh T, Szabó-Révész P, Stankiewicz A, van der Heijden A, et al. Electrospray crystallization for nanosized pharmaceuticals with improved properties. Cryst Growth Des. 2012;12:3514–20.CrossRefGoogle Scholar
  14. 14.
    Rulison A, Flagan R. Scale-up of electrospray atomization using linear arrays of Taylor cones. Rev Sci Instrum. 1993;64(3):683–6.CrossRefGoogle Scholar
  15. 15.
    Patil S, Kulkarni J, Mahadik K. Exploring the potential of electrospray technology in cocrystal synthesis. Ind Eng Chem Res. 2016;55:8409–14.CrossRefGoogle Scholar
  16. 16.
    Patil S, Ujalambkar V, Mahadik A. Electrospray technology as a probe for cocrystal synthesis: influence of solvent and coformer structure. J Drug Delivery Sci Technol. 2017;39:217–22.CrossRefGoogle Scholar
  17. 17.
    Wang M, Rutledge G, Myerson A, Trout B. Production and characterization of carbamazepine nanocrystals by electrospraying for continuous pharmaceutical manufacturing. J Pharm Sci. 2012;101(3):1178–88.CrossRefPubMedGoogle Scholar
  18. 18.
    Banpurkar A, Nichols K, Mugele F. Electrowetting-based microdrop tensiometer. Langmuir. 2008;24(19):10549–51.CrossRefPubMedGoogle Scholar
  19. 19.
    Patil S, Mahadik K, Paradkar A. Liquid crystalline phase as a probe for crystal engineering of lactose: carrier for pulmonary drug delivery. Eur J Pharm Sci. 2015;68:43–50.CrossRefPubMedGoogle Scholar
  20. 20.
    Patil S, Choudhary B, Rathore A, Roy K, Mahadik K. Enhanced oral bioavailability and anticancer activity of novel curcumin loaded mixed micelles in human lung cancer cells. Phytomedicine. 2015;22:1103–11.CrossRefPubMedGoogle Scholar
  21. 21.
    Higuchi T, Connors K. Phase-solubility techniques. Adv Anal Chem Instrum. 1965;4:117–23.Google Scholar
  22. 22.
    Apparent Intrinsic Dissolution-Dissolution Testing Procedures for Rotating Disk and Stationary Disk. The United States Pharmacopeia and National Formulary USP 35–NF 30. Rockville: The United States Pharmacopeial Convention, Inc.; 2012.Google Scholar
  23. 23.
    Childs S, Rodriguez-Hornedo N, Reddy L, Jayasankar A, Maheshwar C, McCausland L, et al. Screening strategies based on solubility and solution composition generate pharmaceutically acceptable cocrystals of carbamazepine. Cryst Eng Commun. 2008;10:856–64.CrossRefGoogle Scholar
  24. 24.
    Fleischman S, Kuduva S, McMahon J, et al. Crystal engineering of the composition of pharmaceutical phases: multiple-component crystalline solids involving carbamazepine. Cryst Growth Des. 2003;3:909–19.CrossRefGoogle Scholar
  25. 25.
    Florence A, Johnston A, Price S, Nowell H, Kennedy A, Shankland N. An automated parallel crystallisation search for predicted crystal structures and packing motifs of carbamazepine. J Pharm Sci. 2006;95:1918–30.CrossRefPubMedGoogle Scholar
  26. 26.
    Grzesiak A, Lang M, Kim K, Matzger J. Comparison of the four anhydrous polymorphs of carbamazepine and the crystal structure of form I. J Pharm Sci. 2003;92:2260–71.CrossRefPubMedGoogle Scholar
  27. 27.
    Harris R, Ghi P, Puschmann H, Apperley D, Griesser U, Hammond R, et al. Structural studies of the polymorphs of carbamazepine, its dihydrate, and two solvates. Org Process Res Dev. 2005;9:902–10.CrossRefGoogle Scholar
  28. 28.
    Johnston A, Johnston B, Kennedy A, Florence A. Targeted crystallisation of novel carbamazepine solvates based on a retrospective Random Forest classification. Cryst Eng Commun. 2008;10:23–5.CrossRefGoogle Scholar
  29. 29.
    Arlin J, Price L, Price S, Florence A. A strategy for producing predicted polymorphs: catemeric carbamazepine form V. Chem Commun. 2011;47:7074–6.CrossRefGoogle Scholar
  30. 30.
    Tian F, Zeitler J, Strachan C, Saville D, Gordon K, Rades T. Characterizing the conversion kinetics of carbamazepine polymorphs to the dihydrate in aqueous suspension using Raman spectroscopy. J Pharm Biomed Anal. 2006;40:271–80.CrossRefPubMedGoogle Scholar
  31. 31.
    McGregor C, Saunders M, Buckton G, Saklatvalaaet R. The use of high-speed differential scanning calorimetry (Hyper-DSCTM) to study the thermal properties of carbamazepine polymorphs. Thermochim Acta. 2004;17:231–7.CrossRefGoogle Scholar
  32. 32.
    Gu C, Young V, Grant D. Polymorph screening: influence of solvents on the rate of solvent-mediated polymorphic transformation. J Pharm Sci. 2000;90(11):1878–90.CrossRefGoogle Scholar
  33. 33.
    Kelly R, Rodríguez-Hornedo N. Solvent effects on the crystallization and preferential nucleation of carbamazepine anhydrous polymorphs: a molecular recognition perspective. Org Process Res Dev. 2009;13:1291–300.CrossRefGoogle Scholar
  34. 34.
    Lowes M, Caira M, Lotter A, van Der Watt J. Physicochemical properties and X-ray structural studies of the trigonal polymorph of carbamazepine. J Pharm Sci. 1987;76(9):744–52.CrossRefPubMedGoogle Scholar
  35. 35.
    Lang M, Kampf JW, Matzger AJ. Form IV of carbamazepine. J Pharm Sci. 2002;91:1186–90.CrossRefPubMedGoogle Scholar
  36. 36.
    Lang M, Grzesiak AL, Matzger AJ. The use of polymer heteronuclei for crystalline polymorph selection. J Am Chem Soc. 2002;124:14834–5.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Sharvil Patil
    • 1
    Email author
  • Kumudni Xalxo
    • 1
  • Kakasaheb Mahadik
    • 1
  1. 1.Department of Pharmaceutics, Poona College of PharmacyBharati Vidyapeeth Deemed UniversityPuneIndia

Personalised recommendations