Skip to main content

Advertisement

Log in

Mapping the Patent Landscape in the Field of Personalized Medicine

  • Original Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Purpose

This study aims to describe innovation profile in the field of personalized medicine. While the major market players have recognized the importance of personalizing health care as the next milestone towards improved clinical outcomes, a common framework has yet to emerge. In the absence of such governance framework, the practices of research and development can shape the progress of the field. The cognitive structure of the research and development in the personalized medicine is mapped by characterizing the attributes of underlying technological space.

Methods

By exploring the technological trajectory and emerging patterns of personalized medicine discerned in patenting activity and citation relations, a detailed picture of innovation in the field is obtained. Moreover, a topic modeling technique was applied to understand the emergence and institutionalization of new technological fields.

Results

The results show that the patent landscape is dominated by therapeutic patents used in the oncology and therapeutic areas of neurodegenerative and infectious diseases. Increase in funding for the proper cycling between research, clinical care, and cost management program would accelerate the adoption of precision medicine and promote the convergence of IT-driven data science and the traditional natural sciences.

Conclusions

This work offers a complementary perspective to the field of personalized medicine, focusing on the exploitation of patent information. We expect that systematic understanding of the technology landscape and evolving R&D process in the personalized medicine may help to provide insights for making future technology planning more rationally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ginsburg GS, McCarthy JJ. Personalized medicine: revolutionizing drug discovery and patient care. Trends Biotechnol. 2001;19(12):491–6.

    Article  CAS  PubMed  Google Scholar 

  2. Sadée W, Dai Z. Pharmacogenetics/genomics and personalized medicine. Hum Mol Genet. 2005;14(2):R207–14.

    Article  PubMed  Google Scholar 

  3. Ginsburg GS, Willard HF. Genomic and personalized medicine: foundations and applications. Transl Res. 2009;154(6):277–87.

    Article  PubMed  Google Scholar 

  4. Valdes AM, Glass D, Spector TD. Omics technologies and the study of human ageing. Nat Rev Genet. 2013;14(9):601–7.

    PubMed  Google Scholar 

  5. Willard HF, Angrist M, Ginsburg GS. Genomic medicine: genetic variation and its impact on the future of health care. Philos Trans R Soc B. 2005;360(1460):1543–50.

    Article  CAS  Google Scholar 

  6. Hamburg MA, Collins FS. The path to personalized medicine. New Engl J Med. 2010;363(4):301–4.

    Article  CAS  PubMed  Google Scholar 

  7. Seo D, Ginsburg GS. Genomic medicine: bringing biomarkers to clinical medicine. Curr Opin Chem Biol. 2005;9(4):381–6.

    Article  CAS  PubMed  Google Scholar 

  8. Grech G. Grossman, introduction. In: Grech G, Grossman I, editors. Preventive and predictive genetics: towards personalised medicine. Cham: Springer International Publishing; 2015. p. 1–6.

    Chapter  Google Scholar 

  9. Aronson SJ, Rehm HL. Building the foundation for genomics in precision medicine. Nature. 2015;526(7573):336–42.

    Article  CAS  PubMed  Google Scholar 

  10. Mittra J, Tait J. Analysing stratified medicine business models and value systems: innovation-regulation interactions. New Biotechnol. 2012;29(6):709–19.

    Article  CAS  Google Scholar 

  11. Anonymous. Precision Medicine Initiative: data security policy principles and framework. In: The White House. 2016. https://www.whitehouse.gov/sites/whitehouse.gov/files/documents/PMI_Security_Principles_Framework_v2.pdf Accessed 25 May 2016.

  12. Office of the Press Secretary. FACT SHEET: President Obama’s Precision Medicine Initiative. In: The White House. https://www.whitehouse.gov/the-press-office/2015/01/30/fact-sheet-president-obama-s-precision-medicine-initiative Accessed 25 May 2016.

  13. Snyderman R, Drake CD. Personalized healthcare: unlocking the potential of genomic and precision medicine. J. Precision Med. 2015: 38–41.

  14. Bahcall O. Precision Medicine. Nature. 2015;526(7573):335.

    Article  CAS  PubMed  Google Scholar 

  15. Relling MV, Evans WE. Pharmacogenomics in the clinic. Nature. 2015;526(7573):343–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Deverka PA, Doksum T, Carlson RJ. Integrating molecular medicine into the US health-care system: opportunities, barriers, and policy challenges. Clin Pharmacol Ther. 2007;82(4):427–34.

    Article  CAS  PubMed  Google Scholar 

  17. Chataway J, Fry C, Marjanovic S, Yaqub O. Public-private collaborations and partnerships in stratified medicine: making sense of new interactions. New Biotechnol. 2012;29(6):732–40.

    Article  CAS  Google Scholar 

  18. Keeling P, Roth M, Zietlow T. The economics of personalized medicine: commercialization as a driver of return on investment. New Biotechnol. 2012;29(6):720–31.

    Article  CAS  Google Scholar 

  19. Tutton R, Jamie K. Personalized medicine in context: a social science perspective. Drug Discov Today Ther Strateg. 2013;10(4):e183–7.

    Article  Google Scholar 

  20. Bubela T, Gold ER, Graff GD, et al. Patent landscaping for life sciences innovation: toward consistent and transparent practices. Nat Biotechnol. 2013;31(3):202–6.

    Article  CAS  PubMed  Google Scholar 

  21. Schulman KA, Vidal AV, Ackerly DC. Personalized medicine and disruptive innovation: implications for technology assessment. Genet Med. 2009;11(8):577–81.

    Article  PubMed  Google Scholar 

  22. Narin F. Patents as indicators for the evaluation of industrial research output. Scientometrics. 1995;34(3):489–96.

    Article  Google Scholar 

  23. Blei DM, Lafferty JD. Topic models. In: Srivastava AN, Sahami M, editors. Text mining: classification, clustering, and applications. Boca Raton: CRC press; 2009. p. 71–94.

    Google Scholar 

  24. Blei DM. Probabilistic topic models. Commun ACM. 2012;55(4):77–84.

    Article  Google Scholar 

  25. Kaplan S, Vakili K. The double-edged sword of recombination in breakthrough innovation. Strategic Manage J. 2015;36(10):1435–57.

    Article  Google Scholar 

  26. Klein RD. Gene patents and genetic testing in the United States. Nat Biotechnol. 2007;25(9):989–90.

    Article  CAS  PubMed  Google Scholar 

  27. Collins FS, Morgan M, Patrinos A. The Human Genome Project: lessons from large-scale biology. Science. 2003;300(5617):286–90.

    Article  CAS  PubMed  Google Scholar 

  28. Graff GD, Phillips D, Lei Z, et al. Not quite a myriad of gene patents. Nat Biotechnol. 2013;31(5):404–10.

    Article  CAS  PubMed  Google Scholar 

  29. Kesselheim AS, Cook-Deegan RM, Winickoff DE, Mello MM. Gene patenting—the Supreme Court finally speaks. New Engl J Med. 2013;369(9):869–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Offit K, Bradbury A, Storm C, et al. Gene patents and personalized cancer care: impact of the Myriad case on clinical oncology. J Clin Oncol. 2013;31(21):2743–8.

    Article  PubMed  Google Scholar 

  31. Ledford H. Myriad ruling causes confusion. Nature. 2013;498(7454):281–2.

    Article  CAS  PubMed  Google Scholar 

  32. Sassoon I, Blanc V. Antibody–drug conjugate (ADC) clinical pipeline: a review. In: Ducry L, editor. Antibody-drug conjugates. New York: Humana press; 2013. p. 1–27.

    Google Scholar 

  33. Karaman MW, Herrgard S, Treiber DK, et al. A quantitative analysis of kinase inhibitor selectivity. Nat Biotechnol. 2008;26(1):127–32.

    Article  CAS  PubMed  Google Scholar 

  34. Davis JC, Furstenthal L, Desai AA, et al. The microeconomics of personalized medicine: today’s challenge and tomorrow’s promise. Nat Rev Drug Discov. 2009;8(4):279–86.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Medical Research Center programs to J.W.H through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (NRF-2012R1A5A2A28671860). The authors would like to thank the editor and the anonymous reviewers of Journal of Pharmaceutical Innovation for their insightful comments and feedback on this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janghyeok Yoon.

Ethics declarations

Competing Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, C.H., Han, JW., Jeong, B. et al. Mapping the Patent Landscape in the Field of Personalized Medicine. J Pharm Innov 12, 238–248 (2017). https://doi.org/10.1007/s12247-017-9283-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-017-9283-z

Keywords

Navigation