Skip to main content
Log in

Influence of HPMC K100LV and Compritol® HD5 ATO on Drug Release and Rheological Behavior of HPMC K4M Matrix Tablets

  • Original Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Purpose

The objectives of this study were to develop once-a-day oral controlled-release tablets of quetiapine fumarate (QF) and to determine the effect of polymer type, viscosity grade, polymer ratio, and polymer rheological properties on the rate of QF release from hydroxypropyl methylcellulose (HPMC) matrix tablets.

Methods

Tablets were prepared from low-viscosity-grade HPMC K100LV (K100LV), high-viscosity-grade HPMC K4M (K4M), Compritol® HD5 ATO (PEGylated glyceryl behenate (PGB)), and binary combinations of these polymers. In vitro drug release from all tablets was evaluated over 24 h.

Results

In vitro drug release studies revealed that formulations containing K100LV/K4M and PGB/K4M at a ratio of 170:70 resulted in similar release profiles which extended for 24 h (f2 > 50). QF release kinetics followed either diffusion, anomalous transport, case II transport, or super case II transport, as fitted by the Korsmeyer-Peppas model. Tablet swelling and erosion studies were consistent with dissolution profiles. A linear relationship between % swelling and % QF released was observed in tablets containing K4M alone or in combination with K100LV or PGB, indicating the direct role of polymer swelling in controlling the mechanism of drug release. The viscoelastic properties of single and binary polymeric gels made with the three polymers (K100LV, K4M, and PGB) corroborated the in vitro release studies of QF tablets.

Conclusions

Our results provide evidence that blending polymers with different viscosities and hydrophilicities can result in unique matrices with tunable release profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Asare-Addo K, Supuk E, Mahdi MH, Adebisi AO, Nep E, Conway BR, Kaialy W, Al-Hamidi H, Nokhodchi A. Drug release from E chemistry hypromellose tablets using the Bio-Dis USP type III apparatus: an evaluation of the effect of systematic agitation and ionic strength. Colloids Surf B: Biointerfaces. 2016;143:481–9.

    Article  CAS  PubMed  Google Scholar 

  2. Mujtaba A, Kohli K. In vitro/in vivo evaluation of HPMC/alginate based extended-release matrix tablets of cefpodoxime proxetil. Int J Biol Macromol. 2016;89:434–41.

    Article  CAS  PubMed  Google Scholar 

  3. Jain AK, Söderlind E, Viridén A, Schug B, Abrahamsson B, Knopke C, Tajarobi F, Blume H, Anschütz M, Welinder A. The influence of hydroxypropyl methylcellulose (HPMC) molecular weight, concentration and effect of food on in vivo erosion behavior of HPMC matrix tablets. J Control Release. 2014;187:50–8.

    Article  CAS  PubMed  Google Scholar 

  4. Sankalia JM, Sankalia MG, Mashru RC. Drug release and swelling kinetics of directly compressed glipizide sustained-release matrices: establishment of level A IVIVC. J Control Release. 2008;129(1):49–58.

    Article  CAS  PubMed  Google Scholar 

  5. Aguilar-de-Leyva Á, Cifuentes C, Rajabi-Siahboomi AR, Caraballo I. Study of the critical points and the role of the pores and viscosity in carbamazepine hydrophilic matrix tablets. Eur J Pharm Biopharm. 2012;80(1):136–42.

    Article  CAS  PubMed  Google Scholar 

  6. Gil EC, Colarte AI, Bataille B, Pedraz JL, Rodriguez F, Heinamaki J. Development and optimization of a novel sustained-release dextran tablet formulation for propranolol hydrochloride. Int J Pharm. 2006;317(1):32–9.

    Article  CAS  PubMed  Google Scholar 

  7. Siepmann J, Peppas NA. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv Drug Deliver Rev. 2012;64(Supplement (0)):163–74.

    Article  Google Scholar 

  8. Cao QR, Choi YW, Cui JH, Lee BJ. Formulation, release characteristics and bioavailability of novel monolithic hydroxypropylmethylcellulose matrix tablets containing acetaminophen. J Control Release. 2005;108(2–3):351–61.

    Article  CAS  PubMed  Google Scholar 

  9. Joshi SC. Sol-gel behavior of hydroxypropyl methylcellulose (HPMC) in ionic media including drug release. Materials. 2011;4(10):1861–905.

    Article  CAS  Google Scholar 

  10. Samani SM, Montaseri H, Kazemi A. The effect of polymer blends on release profiles of diclofenac sodium from matrices. Eur J Pharm Biopharm. 2003;55(3):351–5.

    Article  CAS  PubMed  Google Scholar 

  11. Velasco MV, Ford JL, Rowe P, Rajabi-Siahboomi AR. Influence of drug:hydroxypropylmethylcellulose ratio, drug and polymer particle size and compression force on the release of diclofenac sodium from HPMC tablets. J Control Release. 1999;57(1):75–85.

    Article  CAS  PubMed  Google Scholar 

  12. De Brabander C, Vervaet C, Remon JP. Development and evaluation of sustained release mini-matrices prepared via hot melt extrusion. J Control Release. 2003;89(2):235–47.

    Article  CAS  PubMed  Google Scholar 

  13. Koffi AA, Agnely F, Ponchel G, Grossiord JL. Modulation of the rheological and mucoadhesive properties of thermosensitive poloxamer-based hydrogels intended for the rectal administration of quinine. Eur J Pharm Sci. 2006;27(4):328–35.

    Article  CAS  PubMed  Google Scholar 

  14. Gonçalves-Araújo T, Rajabi-Siahboomi AR, Caraballo I. Application of percolation theory in the study of an extended release verapamil hydrochloride formulation. Int J Pharm. 2008;361(1):112–7.

    Article  PubMed  Google Scholar 

  15. Missaghi S, Fegely KA, Rajabi-Siahboomi AR. Investigation of the effects of hydroalcoholic solutions on textural and rheological properties of various controlled release grades of hypromellose. AAPS PharmSciTech. 2009;10(1):77–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hiremath PS, Saha RN. Oral matrix tablet formulations for concomitant controlled release of anti-tubercular drugs: design and in vitro evaluations. Int J Pharm. 2008;362(1–2):118–25.

    Article  CAS  PubMed  Google Scholar 

  17. Hewlett KO, L’Hote-Gaston J, Radler M, Shull KR. Direct measurement of the time-dependent mechanical response of HPMC and PEO compacts during swelling. Int J Pharm. 2012;434(1–2):494–501.

    Article  CAS  PubMed  Google Scholar 

  18. Dvořáčková K, Doležel P, Mašková E, Muselík J, Kejdušová M, Vetchý D. The effect of acid pH modifiers on the release characteristics of weakly basic drug from hydrophlilic–lipophilic matrices. AAPS PharmSciTech. 2013;14(4):1341–8.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Defang O, Shufang N, Wei L, Hong G, Hui L, Weisan P. In vitro and in vivo evaluation of two extended release preparations of combination metformin and glipizide. Drug Dev Ind Pharm. 2005;31(7):677–85.

    Article  CAS  PubMed  Google Scholar 

  20. Yang L, Fassihi R. Modulation of diclofenac release from a totally soluble controlled release drug delivery system. J Control Release. 1997;44(2):135–40.

    Article  CAS  Google Scholar 

  21. Mehta RY, Missaghi S, Tiwari SB, Rajabi-Siahboomi AR. Application of ethylcellulose coating to hydrophilic matrices: a strategy to modulate drug release profile and reduce drug release variability. AAPS PharmSciTech. 2014;15(5):1049–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Aburahma MH, Badr-Eldin SM. Compritol 888 ATO: a multifunctional lipid excipient in drug delivery systems and nanopharmaceuticals. Expert Opin Drug Deliv. 2014;11(12):1865–83.

    Article  CAS  PubMed  Google Scholar 

  23. Jannin V, Berard V, N’Diaye A, Andres C, Pourcelot Y. Comparative study of the lubricant performance of Compritol (R) 888 ATO either used by blending or by hot melt coating. Int J Pharm. 2003;262(1–2):39–45.

    Article  CAS  PubMed  Google Scholar 

  24. N’Diaye A, Jannin V, Berard V, Andres C, Pourcelot Y. Comparative study of the lubricant performance of Compritol (R) HD5 ATO and Compritol (R) 888 ATO: effect of polyethylene glycol behenate on lubricant capacity. Int J Pharm. 2003;254(2):263–9.

    Article  PubMed  Google Scholar 

  25. Barakat NS, Elbagory IM, Almurshedi AS. Controlled-release carbamazepine granules and tablets comprising lipophilic and hydrophilic matrix components. AAPS PharmSciTech. 2008;9(4):1054–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ibrahim MA, Fouad EA, El-Badry M. Employing Compritol in a mixed matrix for sustaining chlorpheniramine maleate release: kinetic study. Dig J Nanomater Bios. 2013;8(2):737–46.

    Google Scholar 

  27. Li FQ, JH H, Deng JX, Su H, Xu S, Liu JY. In vitro controlled release of sodium ferulate from Compritol 888 ATO-based matrix tablets. Int J Pharm. 2006;324(2):152–7.

    Article  CAS  PubMed  Google Scholar 

  28. Goldstein JM. Quetiapine fumarate (Seroquel (R)): a new atypical antipsychotic. Drugs Today. 1999;35(3):193–210.

    Article  CAS  PubMed  Google Scholar 

  29. Gil EC, Colarte AI, Bataille B, Pedraz JL, Rodríguez F, Heinämäki J. Development and optimization of a novel sustained-release dextran tablet formulation for propranolol hydrochloride. Int J Pharm. 2006;317(1):32–9.

    Article  CAS  PubMed  Google Scholar 

  30. US FDA dissolution methods for quetiapine fumarate extended release and conventional tablets. http://www.accessdata.fda.gov/scripts/cder/dissolution/dsp_SearchResults_Dissolutions.cfm. Accessed 12 November 2015

  31. Costa P, Manuel J, Lobo S. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13(2):123–33.

    Article  CAS  PubMed  Google Scholar 

  32. Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA. Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm. 1983;15(1):25–35.

    Article  CAS  Google Scholar 

  33. Peppas NA. Analysis of Fickian and non-Fickian drug release from polymers. Pharm Acta Helv. 1985;60(4):110–1.

    CAS  PubMed  Google Scholar 

  34. Ritger PL, Peppas NA. A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J Control Release. 1987;5(1):37–42.

    Article  CAS  Google Scholar 

  35. Ferrero C, Massuelle D, Doelker E. Towards elucidation of the drug release mechanism from compressed hydrophilic matrices made of cellulose ethers. II. Evaluation of a possible swelling-controlled drug release mechanism using dimensionless analysis. J Control Release. 2010;141(2):223–33.

    Article  CAS  PubMed  Google Scholar 

  36. Dumortier G, Grossiord JL, Agnely F, Chaumeil JC. A review of poloxamer 407 pharmaceutical and pharmacological characteristics. Pharm Res. 2006;23(12):2709–28.

    Article  CAS  PubMed  Google Scholar 

  37. Wang M, Winter HH, Auernhammer GK. Time and frequency dependent rheology of reactive silica gels. J Colloid Interface Sci. 2014;413:159–66.

    Article  CAS  PubMed  Google Scholar 

  38. Rudraraju VS, Wyandt CM. Rheology of microcrystalline cellulose and sodiumcarboxymethyl cellulose hydrogels using a controlled stress rheometer: part II. Int J Pharm. 2005;292(1–2):63–73.

    Article  CAS  PubMed  Google Scholar 

  39. Rajabi-Siahboomi AR, Bowtell RW, Mansfield P, Davies MC, Melia CD. Structure and behavior in hydrophilic matrix sustained release dosage forms: 4. Studies of water mobility and diffusion coefficients in the gel layer of HPMC tablets using NMR imaging. Pharm Res. 1996;13(3):376–80.

    Article  CAS  PubMed  Google Scholar 

  40. Jones DS, Muldoon BCO, David Woolfson A, Dominic Sanderson F. Rheological destructuring of aqueous gels composed of cellulose ethers following storage in the presence of redox agents. J Appl Polym Sci. 2005;98(2):852–9.

    Article  CAS  Google Scholar 

  41. Mourao SC, da Silva C, Bresolin TMB, Serra CHR, Porta V. Dissolution parameters for sodium diclofenac-containing hypromellose matrix tablet. Int J Pharm. 2010;386(1–2):201–7.

    Article  CAS  PubMed  Google Scholar 

  42. Huanbutta K, Sriamornsak P, Limmatvapirat S, Luangtana-anan M, Yoshihashi Y, Yonemochi E, Terada K, Nunthanid J. Swelling kinetics of spray-dried chitosan acetate assessed by magnetic resonance imaging and their relation to drug release kinetics of chitosan matrix tablets. Eur J Pharm Biopharm. 2011;77(2):320–6.

    Article  CAS  PubMed  Google Scholar 

  43. Efentakis M, Pagoni I, Vlachou M, Avgoustakis K. Dimensional changes, gel layer evolution and drug release studies in hydrophilic matrices loaded with drugs of different solubility. Int J Pharm. 2007;339(1):66–75.

    Article  CAS  PubMed  Google Scholar 

  44. Tiwari SB, Rajabi-Siahboomi AR (2008) Modulation of drug release from hydrophilic matrices. Pharm Tech Eur 1.

  45. Akinosho H, Hawkins S, Wicker L. Hydroxypropyl methylcellulose substituent analysis and rheological properties. Carbohydr Polym. 2013;98(1):276–81.

    Article  CAS  PubMed  Google Scholar 

  46. Viridén A, Wittgren B, Larsson A. Investigation of critical polymer properties for polymer release and swelling of HPMC matrix tablets. Eur J Pharm Sci. 2009;36(2):297–309.

    Article  PubMed  Google Scholar 

  47. Baumgartner S, Kristl J, Peppas NA. Network structure of cellulose ethers used in pharmaceutical applications during swelling and at equilibrium. Pharm Res. 2002;19(8):1084–90.

  48. Mahdi MH, Diryak R, Kontogiorgos V, Morris GA, Smith AM. In situ rheological measurements of the external gelation of alginate. Food Hydrocoll. 2016;55:77–80.

  49. Sekiguchi Y, Sawatari C, Kondo T. A gelation mechanism depending on hydrogen bond formation in regioselectively substituted O-methylcelluloses. Carbohydr Polym. 2003;53(2):145–53.

  50. Shandryuk GA, Kuptsov SA, Shatalova AM, Plate NA, Talroze RV. Liquid crystal H-bonded polymer networks under mechanical stress. Macromolecules. 2003;36(9):3417–23.

  51. Silva SMC, Pinto FV, Antunes FE, Miguel MG, Sousa JJS, Pais AACC. Aggregation and gelation in hydroxypropylmethyl cellulose aqueous solutions. J Colloid Interface Sci. 2008;327(2):333–40.

  52. Hiremath PS, Saha RN. Controlled release hydrophilic matrix tablet formulations of isoniazid: design and in vitro studies. AAPS PharmSciTech. 2008;9(4):1171–8.

  53. Moreira HR, Munarin F, Gentilini R, Visai L, Granja PL, Tanzi MC, Petrini P. Injectable pectin hydrogels produced by internal gelation: pH dependence of gelling and rheological properties. Carbohydr Polym. 2014;103:339–47.

Download references

Acknowledgements

This project was financially supported by the Deanship of Academic Research and Graduate Studies at Al-Zaytoonah University of Jordan. The authors would like to thank Hikma Pharmaceuticals for providing tableting facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rania Hamed.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamed, R., Al-Samydai, A., Al Baraghthi, T. et al. Influence of HPMC K100LV and Compritol® HD5 ATO on Drug Release and Rheological Behavior of HPMC K4M Matrix Tablets. J Pharm Innov 12, 62–75 (2017). https://doi.org/10.1007/s12247-016-9269-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-016-9269-2

Keywords

Navigation