Skip to main content
Log in

Application of Mechanistic Models for Process Design and Development of Biologic Drug Products

  • Review Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Modeling approaches play a valuable role at various stages of development and life-cycle management of biopharmaceutical products. In Quality-by-Design (QbD) paradigm, quality needs to be designed into the product rather than merely confirming it through end product testing; this requires in-depth understanding of the product quality and impact of manufacturing process on product quality (Group IEW 2005, 2008, 2009). Modeling strategies in support of QbD paradigm for biologics are particularly important because of the costs involved in the development of biologic products (Group CBW 2009; Fissore and Antonello (Qual Des Biopharm Drug Prod Dev 18:565–93, 2015)). This mini-review focuses on the application of mechanistic models in the development of biologic drug products as ready-to-use solutions or lyophilized drug products. The choice of the modeling approach is dependent on the specific processes involved in the unit operation as well as intent of application of modeling. The application of models to unit operations in biologics drug product processing such as mixing (compounding), membrane transfer (ultrafiltration/diafiltration), freeze-thaw, and lyophilization, to characterize the quality risks, define the design space, provide input to control strategy, and build robustness in the process will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Group IEW. ICH harmonized tripartite guideline Q8(R2) - pharmaceutical development. International conference on harmonisation 2009.

  2. Group IEW. ICH Q9, quality risk management. International conference on harmonisation 2005.

  3. Group IEW. ICH Q10 Quality systems. International conference on harmonisation 2008.

  4. Group CBW. A-Mab: a case study in bioprocess development. Emeryville: CASSS; 2009.

    Google Scholar 

  5. David Fissore RP, Antonello A. Barresi. Using mathematical modeling and prior knowledge for QbD in freeze-drying processes. Qual Des Biopharm Drug Prod Dev. 2015;18:565–93.

    Google Scholar 

  6. Cyrus Agarabi MAK, Rakhi B. Shah. Challenges and opportunities for biotech quality by design. Qual Des Biopharm Drug Prod Dev. 2015;18:1–15.

    Google Scholar 

  7. Wolfrum FJS. A QbD approach in the development and scale-up of mixing processes. Qual Des Biopharm Drug Prod Dev. 2015;18:211–36.

    Google Scholar 

  8. Group IEW. ICH quality implementation working group points to consider (R2), ICH-endorsed guide for ICH Q8/Q9/Q10 implementation. 2011.

  9. ANSYS Fluent 14.5 user’s manual, 2012, ANSYS Inc., Canonsburg, PA

  10. Spalding BELaDB. Lectures in mathematical models of turbulence. London: Academic Press; 1972.

    Google Scholar 

  11. Wang X et al. A hydrodynamics-reaction kinetics coupled model for evaluating bioreactors derived from CFD simulation. Bioresour Technol. 2010;101(24):9749–57.

    Article  CAS  PubMed  Google Scholar 

  12. Wu B. CFD investigation of turbulence models for mechanical agitation of non-Newtonian fluids in anaerobic digesters. Water Res. 2011;45(5):2082–94.

    Article  CAS  PubMed  Google Scholar 

  13. Hirt CW, Nichols BD. Volume of Fluid (VOF) method for the dynamics of free boundaries. J Comput Phys. 1981;39(1):201–25.

    Article  Google Scholar 

  14. Bai G, Bee JS, Biddlecombe JG, Chen Q, Leach WT. Computational fluid dynamics (CFD) insights into agitation stress methods in biopharmaceutical development. Int J Pharm. 2012;423(2):264–80.

    Article  CAS  PubMed  Google Scholar 

  15. Wang L et al. CFD simulation of shear-induced aggregation and breakage in turbulent Taylor-Couette flow. J Colloid Interface Sci. 2005;285(1):167–78.

    Article  CAS  PubMed  Google Scholar 

  16. Paul EL, Atiemo-Obeng VA, Kresta SM. Handbook of industrial mixing: science and practice. Hoboken: Wiley; 2004.

    Google Scholar 

  17. Brannock M et al. Mixing characterisation of full-scale membrane bioreactors: CFD modelling with experimental validation. Water Res. 2010;44(10):3181–91.

    Article  CAS  PubMed  Google Scholar 

  18. Chen X, Sadineni V, Maity M, Quan Y, Enterline M, Mantri RV. Finite element method (FEM) modeling of freeze-drying: monitoring pharmaceutical product robustness during lyophilization. AAPS PharmSciTech. 2015;16(6):1317–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gikanga B, Chen Y, Stauch OB, Maa YF. Mixing monoclonal antibody formulations using bottom-mounted mixers: impact of mechanism and design on drug product quality. PDA J Pharm Sci Technol. 2015;69(2):284–96.

    Article  CAS  PubMed  Google Scholar 

  20. Rathore N, Rajan RS. Current perspectives on stability of protein drug products during formulation. Fill Finish Oper Biotechnol Prog. 2008;24(3):504–14.

    Article  CAS  Google Scholar 

  21. Singh SK, Kirchhoff CF, Banerjee A. Application of QbD principles to biologics product: formulation and process development. Quality by design for biopharmaceuticals. Hoboken: Wiley; 2009. p. 175–92.

    Google Scholar 

  22. Jameel F, Hershenson S. Formulation and process development strategies for manufacturing biopharmaceuticals. Hoboken: John Wiley & Sons; 2010.

    Book  Google Scholar 

  23. Sumit K, Shikha T, Deepika T, Ashish B. A quantitative approach for pharmaceutical quality by design patterns. Inveti Rapid: Pharm Anal Qual Assur. 2012;2012(4):1–8.

    Google Scholar 

  24. Martin-Moe S, Lim FJ, Wong RL, Sreedhara A, Sundaram J, Sane SU. A new roadmap for biopharmaceutical drug product development: integrating development, validation, and quality by design. J Pharm Sci. 2011;100(8):3031–43.

    Article  CAS  PubMed  Google Scholar 

  25. Shukla AA, Mostafa S, Wilson M, Lange D. Vertical integration of disposables in biopharmaceutical drug substance manufacturing. Bioprocess Int. 2012;10:34–47.

    CAS  Google Scholar 

  26. Rathore AS. Roadmap for implementation of quality by design (QbD) for biotechnology products. Trends Biotechnol. 2009;27(9):546–53.

    Article  CAS  PubMed  Google Scholar 

  27. Group IEW. ICH harmonized tripartite guideline Q8(R2) - pharmaceutical development. 2009.

  28. Rathore AS, Sharma C, Persad AA. Use of computational fluid dynamics as a tool for establishing process design space for mixing in a bioreactor. Biotechnol Prog. 2012;28(2):382–91.

    Article  CAS  PubMed  Google Scholar 

  29. Sahu A, Kumar P, Patwardhan A, Joshi J. CFD modelling and mixing in stirred tanks. Chem Eng Sci. 1999;54(13):2285–93.

    Article  CAS  Google Scholar 

  30. Rantanen J, Khinast J. The future of pharmaceutical manufacturing sciences. J Pharm Sci. 2015;104(11):3612–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Biddlecombe JG, Craig AV, Zhang H, Uddin S, Mulot S, Fish BC, et al. Determining antibody stability: creation of solid-liquid interfacial effects within a high shear environment. Biotechnol Prog. 2007;23(5):1218–22.

    CAS  PubMed  Google Scholar 

  32. Maa YF, Hsu CC. Protein denaturation by combined effect of shear and air-liquid interface. Biotechnol Bioeng. 1997;54(6):503–12.

    Article  CAS  PubMed  Google Scholar 

  33. Wiesbauer J, Prassl R, Nidetzky B. Renewal of the air–water interface as a critical system parameter of protein stability: aggregation of the human growth hormone and its prevention by surface-active compounds. Langmuir. 2013;29(49):15240–50.

    Article  CAS  PubMed  Google Scholar 

  34. Kumaresan T, Joshi JB. Effect of impeller design on the flow pattern and mixing in stirred tanks. Chem Eng J. 2006;115(3):173–93.

    Article  CAS  Google Scholar 

  35. Regner M, Östergren K, Trägårdh C. Effects of geometry and flow rate on secondary flow and the mixing process in static mixers—a numerical study. Chem Eng Sci. 2006;61(18):6133–41.

    Article  CAS  Google Scholar 

  36. Rathod ML, Kokini JL. Effect of mixer geometry and operating conditions on mixing efficiency of a non-Newtonian fluid in a twin screw mixer. J Food Eng. 2013;118(3):256–65.

    Article  Google Scholar 

  37. Shire SJ, Shahrokh Z, Liu J. Challenges in the development of high protein concentration formulations. J Pharm Sci. 2004;93(6):1390–402.

    Article  CAS  PubMed  Google Scholar 

  38. Saluja A, Kalonia DS. Nature and consequences of protein-protein interactions in high protein concentration solutions. Int J Pharm. 2008;358(1–2):1–15.

    Article  CAS  PubMed  Google Scholar 

  39. Zhang F, Liu M-R, Wan H-T. Discussion about several potential drawbacks of PEGylated therapeutic proteins. Biol Pharm Bull. 2014;37(3):335–9.

    Article  CAS  PubMed  Google Scholar 

  40. Liebner R, Meyer M, Hey T, Winter G, Besheer A. Head to head comparison of the formulation and stability of concentrated solutions of HESylated versus PEGylated anakinra. J Pharm Sci. 2015;104(2):515–26.

    Article  CAS  PubMed  Google Scholar 

  41. Shire SJ, Liu J, Friess W, Jörg S, Mahler H-C. High-concentration antibody formulations. Formulation and process development strategies for manufacturing biopharmaceuticals. Hoboken: Wiley; 2010. p. 349–81.

    Book  Google Scholar 

  42. Aubin J, Xuereb C. Design of multiple impeller stirred tanks for the mixing of highly viscous fluids using CFD. Chem Eng Sci. 2006;61(9):2913–20.

    Article  CAS  Google Scholar 

  43. Rao G, Moreira A, Brorson K. Disposable bioprocessing: the future has arrived. Biotechnol Bioeng. 2009;102(2):348–56.

    Article  CAS  PubMed  Google Scholar 

  44. Eibl R, Kaiser S, Lombriser R, Eibl D. Disposable bioreactors: the current state-of-the-art and recommended applications in biotechnology. Appl Microbiol Biotechnol. 2010;86(1):41–9.

    Article  CAS  PubMed  Google Scholar 

  45. Li F, Zhou JX, Yang X, Tressel T, Lee B. Current therapeutic antibody production and process optimization. Bioprocess J. 2007;5(4):16.

    Google Scholar 

  46. Sommerfeld S, Strube J. Challenges in biotechnology production—generic processes and process optimization for monoclonal antibodies. Chem Eng Process Process Intensif. 2005;44(10):1123–37.

    Article  CAS  Google Scholar 

  47. Ball P. Scale-up and scale-down of membrane-based separation processes. Membr Technol. 2000;2000(117):10–3.

    Article  Google Scholar 

  48. Christy C, Vermant S. The state-of-the-art of filtration in recovery processes for biopharmaceutical production. Desalination. 2002;147(1–3):1–4.

    Article  CAS  Google Scholar 

  49. Shukla AA, Thömmes J. Recent advances in large-scale production of monoclonal antibodies and related proteins. Trends Biotechnol. 2010;28(5):253–61.

    Article  CAS  PubMed  Google Scholar 

  50. Van Reis R, Zydney A. Membrane separations in biotechnology. Curr Opin Biotechnol. 2001;12(2):208–11.

    Article  PubMed  Google Scholar 

  51. Rajniak P, Tsinontides SC, Pham D, Hunke WA, Reynolds SD, Chern RT. Sterilizing filtration—principles and practice for successful scale-up to manufacturing. J Membr Sci. 2008;325(1):223–37.

    Article  CAS  Google Scholar 

  52. Rathore A, Shirke A. Recent developments in membrane-based separations in biotechnology processes: review. Prep Biochem Biotechnol. 2011;41(4):398–421.

    Article  CAS  PubMed  Google Scholar 

  53. Velayudhan A, Menon MK. Modeling of purification operations in biotechnology: enabling process development, optimization, and scale-up. Biotechnol Prog. 2007;23(1):68–73.

    Article  CAS  PubMed  Google Scholar 

  54. Zydney AL, Ho CC. Effect of membrane morphology on system capacity during normal flow microfiltration. Biotechnol Bioeng. 2003;83(5):537–43.

    Article  CAS  PubMed  Google Scholar 

  55. Bolton GR, Boesch AW, Lazzara MJ. The effects of flow rate on membrane capacity: development and application of adsorptive membrane fouling models. J Membr Sci. 2006;279(1–2):625–34.

    Article  CAS  Google Scholar 

  56. Damak K, Ayadi A, Zeghmati B, Schmitz P. A new Navier-stokes and Darcy’s law combined model for fluid flow in crossflow filtration tubular membranes. Desalination. 2004;161(1):67–77.

    Article  CAS  Google Scholar 

  57. Smith R, Taha T, Cui ZF. Using an improved 1D boundary layer model with CFD for flux prediction in gas-sparged tubular membrane ultrafiltration. Water Sci Technol J Int Assoc Water Pollut Res. 2005;51(6–7):69–76.

    CAS  Google Scholar 

  58. Sharma C, Malhotra D, Rathore AS. Review of computational fluid dynamics applications in biotechnology processes. Biotechnol Prog. 2011;27(6):1497–510.

    Article  CAS  PubMed  Google Scholar 

  59. Schausberger P, Norazman N, Li H, Chen V, Friedl A. Simulation of protein ultrafiltration using CFD: comparison of concentration polarisation and fouling effects with filtration and protein adsorption experiments. J Membr Sci. 2009;337(1–2):1–8.

    Article  CAS  Google Scholar 

  60. Geissler S, Werner U. Dynamic model of crossflow microfiltration in flat-channel systems under laminar flow conditions. Filtr Sep. 1995;32(6):533–7.

    Article  CAS  Google Scholar 

  61. Warikoo V, Godawat R, Brower K, Jain S, Cummings D, Simons E, et al. Integrated continuous production of recombinant therapeutic proteins. Biotechnol Bioeng. 2012;109(12):3018–29.

    Article  CAS  PubMed  Google Scholar 

  62. Laska ME, Brooks RP, Gayton M, Pujar NS. Robust scale-up of dead end filtration: impact of filter fouling mechanisms and flow distribution. Biotechnol Bioeng. 2005;92(3):308–20.

    Article  CAS  PubMed  Google Scholar 

  63. Radmanovic N, Serno T, Joerg S, Germershaus O. Understanding the freezing of biopharmaceuticals: first-principle modeling of the process and evaluation of its effect on product quality. J Pharm Sci. 2013;102(8):2495–507.

    Article  CAS  PubMed  Google Scholar 

  64. Roessl U, Jajcevic D, Leitgeb S, Khinast JG, Nidetzky B. Characterization of a laboratory-scale container for freezing protein solutions with detailed evaluation of a freezing process simulation. J Pharm Sci. 2014;103(2):417–26.

    Article  CAS  PubMed  Google Scholar 

  65. Lannuccelli M, Suzzi D, Sirnik B, Rinderhofer A, Khinast JG. Numerical simulation of freeze-thaw biopharmaceutical processes. Chemical Engineering Transactions: Italian Association of Chemical Engineering—AIDIC; 2011. p. 907–12.

  66. Rodrigues MA, Balzan G, Rosa M, Gomes D, de Azevedo EG, Singh SK, et al. The importance of heat flow direction for reproducible and homogeneous freezing of bulk protein solutions. Biotechnol Prog. 2013;29(5):1212–21.

    Article  CAS  PubMed  Google Scholar 

  67. Shamlou PA, Breen LH, Bell WV, Pollo M, Thomas BA. A new scaleable freeze-thaw technology for bulk protein solutions. Biotechnol Appl Biochem. 2007;46(1):13–26.

    Article  CAS  PubMed  Google Scholar 

  68. Pegg DE. Principles of cryopreservation. In: Day JG, Stacey GN, editors. Cryopreservation and Freeze-Drying Protocols [Walker JM (Series Editor) Methods in Molecular Biology, vol 368]. New York: Humana Press; 2007. p. 39–57.

  69. Kramer T, Kremer DM, Pikal MJ, Petre WJ, Shalaev EY, Gatlin LA. A procedure to optimize scale-up for the primary drying phase of lyophilization. J Pharm Sci. 2009;98(1):307–18.

    Article  CAS  PubMed  Google Scholar 

  70. Schwegman JJ, Hardwick LM, Akers MJ. Practical formulation and process development of freeze-dried products. Pharm Dev Technol. 2005;10(2):151–73.

    Article  CAS  PubMed  Google Scholar 

  71. Nakagawa K, Hottot B, Vessot S, Andrieu J. Modeling of freezing step during freeze-drying of drugs in vials. AICHE J. 2007;53(5):1362–72.

    Article  CAS  Google Scholar 

  72. Sheehan P, Liapis AI. Modeling of the primary and secondary drying stages of the freeze drying of pharmaceutical products in vials: numerical results obtained from the solution of a dynamic and spatially multi-dimensional lyophilization model for different operational policies. Biotechnol Bioeng. 1998;60(6):712–28.

    Article  CAS  PubMed  Google Scholar 

  73. Pikal MJ, Cardon S, Bhugra C, Jameel F, Rambhatla S, Mascarenhas WJ, et al. The nonsteady state modeling of freeze drying: in-process product temperature and moisture content mapping and pharmaceutical product quality applications. Pharm Dev Technol. 2005;10(1):17–32.

    Article  CAS  PubMed  Google Scholar 

  74. Giordano A, Barresi AA, Fissore D. On the use of mathematical models to build the design space for the primary drying phase of a pharmaceutical lyophilization process. J Pharm Sci. 2011;100(1):311–24.

    Article  CAS  PubMed  Google Scholar 

  75. Fissore D, Barresi AA. Scale-up and process transfer of freeze-drying recipes. Dry Technol. 2011;29(14):1673–84.

    Article  CAS  Google Scholar 

  76. Muzzio CR, Dini NG. Simulation of freezing step in vial lyophilization using finite element method. Comput Chem Eng. 2011;35(11):2274–83.

    Article  CAS  Google Scholar 

  77. Millman MJ, Liapis AI, Marchello JM. Analysis of the lyophilization process using a sorption-sublimation model and various operational policies. AICHE J. 1985;31(10):1594–604.

    Article  CAS  Google Scholar 

  78. Pikal MJ. Use of laboratory data in freeze drying process design: heat and mass transfer coefficients and the computer simulation of freeze drying. J Parent Sci Technol. 1985;39(3):115–39.

    CAS  Google Scholar 

  79. Vynnycky M. An asymptotic model for the primary drying stage of vial lyophilization. J Eng Math. 2016;96(1):175–200.

  80. Fissore D, Pisano R, Barresi AA. Monitoring of the secondary drying in freeze-drying of pharmaceuticals. J Pharm Sci. 2011;100(2):732–42.

    Article  CAS  PubMed  Google Scholar 

  81. Kodama T, Takeuchi M, Wakiyama N, Terada K. Optimization of secondary drying condition for desired residual water content in a lyophilized product using a novel simulation program for pharmaceutical lyophilization. Int J Pharm. 2014;469(1):59–66.

    Article  CAS  PubMed  Google Scholar 

  82. Pikal MJ, Shah S. Intravial distribution of moisture during the secondary drying stage of freeze drying. PDA J Pharm Sci Technol. 1997;51(1):17–24.

    CAS  PubMed  Google Scholar 

  83. Schneid SC, Gieseler H, Kessler WJ, Luthra SA, Pikal MJ. Optimization of the secondary drying step in freeze drying using TDLAS technology. AAPS PharmSciTech. 2011;12(1):379–87.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Velardi SA, Barresi AA. Development of simplified models for the freeze-drying process and investigation of the optimal operating conditions. Chem Eng Res Des. 2008;86(1 A):9–22.

    Article  CAS  Google Scholar 

  85. Mascarenhas WJ, Akay HU, Pikal MJ. A computational model for finite element analysis of the freeze-drying process. Comput Methods Appl Mech Eng. 1997;148(1–2):105–24.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rao V. Mantri.

Additional information

All authors have contributed equally to the manuscript; names are listed in alphabetical order.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Chen, X., Gandhi, R. et al. Application of Mechanistic Models for Process Design and Development of Biologic Drug Products. J Pharm Innov 11, 200–213 (2016). https://doi.org/10.1007/s12247-016-9250-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-016-9250-0

Keywords

Navigation