Ai J, Chen J-F, Rotter JM, Ooi JY. Assessment of rolling resistance models in discrete element simulations. Powder Technol 2011;206(3):269–282.
CAS
Article
Google Scholar
Barrasso D, El Hagrasy A, Litster JD, Ramachandran R. Multi-dimensional population balance model development and validation for a twin screw granulation process. Powder Technology 270 Part B 2015a:612–621.
Barrasso D, Eppinger T, Pereira FE, Aglave R, Debus K, Bermingham SK, Ramachandran R. A multi-scale, mechanistic model of a wet granulation process using a novel bi-directional PBM-DEM coupling algorithm. Chem Eng Sci 2015b;123:500–513.
CAS
Article
Google Scholar
Barrasso D, Ramachandran R. A comparison of model order reduction techniques for a four-dimensional population balance model describing multi-component wet granulation processes. Chem Eng Sci 2012;80:380–392.
CAS
Article
Google Scholar
Barrasso D, Ramachandran R. Multi-scale modeling of granulation processes: bi-directional coupling of PBM with DEM via collision frequencies. Chem Eng Res Des 2015;93:304–317.
CAS
Article
Google Scholar
Barrasso D, Tamrakar A, Ramachandran R. A reduced order PBM-ANN model of a multi-scale PBM-DEM description of a wet granulation process. Chem Eng Sci 2014;119:319–329.
CAS
Article
Google Scholar
Barrasso D, Walia S, Ramachandran R. Multi-component population balance modeling of continuous granulation processes: a parametric study and comparison with experimental trends. Powder Technol 2013;241:85–97.
CAS
Article
Google Scholar
Bouffard J, Bertrand F, Chaouki J. A multiscale model for the simulation of granulation in rotor-based equipment. Chem Eng Sci 2012;81:106–117.
CAS
Article
Google Scholar
Braumann A, Kraft M, Mort PR. Parameter estimation in a multidimensional granulation model. Powder Technol 2010;197(3):196–210.
CAS
Article
Google Scholar
Cameron I, Wang F, Immanuel C, Stepanek F. Process systems modelling and applications in granulation: a review. Chem Eng Sci 2005;60(14):3723–3750.
CAS
Article
Google Scholar
Chaudhury A, Barrasso D, Pandey P, Wu H, Ramachandran R. Population balance model development, validation, and prediction of CQAs of a high-shear wet granulation process: towards QbD in drug product pharmaceutical manufacturing. J Pharm Innov 2014;9(1):53–64.
Article
Google Scholar
Chaudhury A, Kapadia A, Prakash AV, Barrasso D, Ramachandran R. An extended cell-average technique for a multi-dimensional population balance of granulation describing aggregation and breakage. Adv Powder Technol 2013;24(6):962–971.
Article
Google Scholar
Dhenge RM, Cartwright JJ, Hounslow MJ, Salman AD. Twin screw granulation: steps in granule growth. Int J Pharm 2012;438(162):20–32.
CAS
Article
PubMed
Google Scholar
El Hagrasy A. Granulation rate processes in the kneading elements of a twin screw granulator. AIChE J 2013; 59(11):4100–4115.
CAS
Article
Google Scholar
Ennis BJ, Tardos G, Pfeffer R. A microlevel-based characterization of granulation phenomena. Powder Technol 1991;65(13):257–272.
CAS
Article
Google Scholar
Gantt JA, Cameron IT, Litster JD, Gatzke EP. Determination of coalescence kernels for high-shear granulation using DEM simulations. Powder Technol 2006;170(2):53–63.
CAS
Article
Google Scholar
Goldschmidt M, Weijers G, Boerefijn R, Kuipers J. Discrete element modelling of fluidised bed spray granulation. Powder Technol 2003;138(1):39–45.
CAS
Article
Google Scholar
Hagrasy AE, Hennenkamp J, Burke M, Cartwright J, Litster J. Twin screw wet granulation: influence of formulation parameters on granule properties and growth behavior. Powder Technol 2013;238:108–115.
Article
Google Scholar
Hassanpour A, Ghadiri M. Distinct element analysis and experimental evaluation of the heckel analysis of bulk powder compression. Powder Technol 2004;141(3):251–261.
CAS
Article
Google Scholar
Immanuel CD, Doyle FJ III. Solution technique for a multi-dimensional population balance model describing granulation processes. Powder Technol 2005;156(23):213–225.
CAS
Article
Google Scholar
Ingram GD, Cameron IT. Formulation and comparison of alternative multiscale models for drum granulation. Computer Aided Chemical Engineering 2005;20:481–486.
Article
Google Scholar
Iveson SM, Litster JD, Hapgood K, Ennis BJ. Nucleation, growth and breakage phenomena in agitated wet granulation processes: a review. Powder Technol 2001;117(12):3–39.
CAS
Article
Google Scholar
Kumar A, Vercruysse J, Toiviainen M, Panouillot P-E, Juuti M, Vanhoorne V, Vervaet C, Remon JP, Gernaey KV, Beer TD, Nopens I. Mixing and transport during pharmaceutical twin-screw wet granulation: experimental analysis via chemical imaging. Eur J Pharm Biopharm 2014;87(2):279–289.
CAS
Article
PubMed
Google Scholar
Lee KT, Ingram A, Rowson NA. Comparison of granule properties produced using twin screw extruder and high shear mixer: a step towards understanding the mechanism of twin screw wet granulation. Powder Technol 2013; 238:91–98.
CAS
Article
Google Scholar
Liu LX, Litster JD, Iveson SM, Ennis BJ. Coalescence of deformable granules in wet granulation processes. AIChE J 2000;46(3):529–539.
CAS
Article
Google Scholar
Mangwandi C, Cheong Y, Adams M, Hounslow M, Salman A. The coefficient of restitution of different representative types of granules. Chem Eng Sci 2007;62(12):437–450.
CAS
Article
Google Scholar
Poon JM-H, Immanuel CD, Doyle III FJ, Litster JD. A three-dimensional population balance model of granulation with a mechanistic representation of the nucleation and aggregation phenomena. Chem Eng Sci 2008; 63(5):1315– 1329.
CAS
Article
Google Scholar
Ramachandran R, Barton PI. Effective parameter estimation within a multi-dimensional population balance model framework. Chem Eng Sci 2010;65(16):4884–4893.
CAS
Article
Google Scholar
Reinhold A, Briesen H. Numerical behavior of a multiscale aggregation model coupling population balances and discrete element models. Chem Eng Sci 2012;70:165–175.
CAS
Article
Google Scholar
Sayin R, Hagrasy AE, Litster J. Distributive mixing elements: towards improved granule attributes from a twin screw granulation process. Chem Eng Sci 2015;125:165–175.
CAS
Article
Google Scholar
Sen M, Barrasso D, Singh R, Ramachandran R. A multi-scale hybrid CFD-DEM-PBM description of a fluid-bed granulation process. Processes 2014;2(1):89–111.
CAS
Article
Google Scholar
Tardos GI, Khan MI, Mort PR. Critical parameters and limiting conditions in binder granulation of fine powders. Powder Technol 1997;94(3):245–258.
CAS
Article
Google Scholar
U.S Food and Drug Administration. 2006. Guidance for Industry: Q8 Pharmaceutical Development.
U.S. Food and Drug Administration. 2009. Guidance for Industry: Q8(R2) Pharmaceutical Development.
van den Dries K, Vromans H. Relationship between inhomogeneity phenomena and granule growth mechanisms in a high-shear mixer. Int J Pharm 2002;247(12):167–177.
CAS
Article
PubMed
Google Scholar
Vercruysse J, Diaz DC, Peeters E, Fonteyne M, Delaet U, Assche IV, Beer TD, Remon J, Vervaet C. Continuous twin screw granulation: influence of process variables on granule and tablet quality. Eur J Pharm Biopharm 2012;82(1):205– 211.
CAS
Article
PubMed
Google Scholar
Verkoeijen D, Pouw GA, Meesters GMH, Scarlett B. Population balances for particulate processes a volume approach. Chem Eng Sci 2002;57(12):2287–2303.
CAS
Article
Google Scholar