Dermal Drug Delivery for Cutaneous Malignancies: Literature at a Glance

Abstract

Purpose

Cutaneous malignancies are the most common human cancers, and despite growing public awareness of the harmful effects of sun exposure, incidence and morbidity continue to rise which has generated great interest in unravelling of their aetiology and in the search for new non-invasive treatment strategies.

Methods

A yearly increase in incidence of cutaneous malignancies has been reported since a long time worldwide, suggesting that prevalence of this cancer will soon equal that of all other cancers combined. Grouping of various skin lesions and malignancies under a common umbrella term poses challenges because clear differences exist in their aetiopathogenesis, clinical course and management strategies, suggesting the need of the novel and future therapeutic perspectives for the treatment from nanotechnology to immunotherapy.

Results

Moreover, treatment modalities should comprised of gold standards of the current recommended therapies worldwide and the actual needs of these patients.

Conclusion

The overall goal of this review was to explore the approaches for cutaneous malignancies’ new technological methods instead of new molecules.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    Ferreira FR, Costa Nascimento LF, Rotta O. Risk factors for non-melanoma skin cancer in Taubaté, Sao Paulo, Brazil: a case–control study. Rev Assoc Med Bras. 2011;57:424–30.

    PubMed  Article  Google Scholar 

  2. 2.

    Harsh M. Text book of pathology, Published by Jaypee Brothers Medical Publishers (P) Ltd, Edition 3rd; 1998. p. 1009–1016.

  3. 3.

    Taveira SF, Lopez RFV. Topical administration of anticancer drugs for skin cancer treatment. Intech Open Access Publisher; 2011.

  4. 4.

    Beers M, Porter R, Jones T, Kaplan J, Berkwits M. The Merck manual of diagnosis and therapy. Whithouse Station: Merck Research Laboratories; 2006.

    Google Scholar 

  5. 5.

    Russo T, Kasper D, Fauci A. Harrison’s principles of internal medicine. New York: McGraw-Hill; 2005. p. 937–9.

    Google Scholar 

  6. 6.

    Diepgen T, Mahler V. The epidemiology of skin cancer. Br J Dermatol. 2002;146:1–6.

    PubMed  Article  Google Scholar 

  7. 7.

    DeVita VT, Lawrence TS. DeVita, Hellman, and Rosenberg’s cancer: principles and practice of oncology. Lippincott Williams & Wilkins Philadelphia; 2009.

  8. 8.

    Hoey S, Devereux C, Murray L, Catney D, Gavin A, Kumar S, et al. Skin cancer trends in Northern Ireland and consequences for provision of dermatology services. Br J Dermatol. 2007;156:1301–7.

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Green A. Changing patterns in incidence of non-melanoma skin cancer. Epithelial Cell Biol. 1992;1:47–51.

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Glass AG, Hoover RN. The emerging epidemic of melanoma and squamous cell skin cancer. JAMA. 1989;262:2097–100.

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Thackery E. The gale encyclopedia of cancer: Vol. 2, LZ, Gale group; 2002.

  12. 12.

    Madan V, Lear JT, Szeimies R-M. Non-melanoma skin cancer. Lancet. 2010;375:673–85.

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Freedberg IM, Eisen AZ, Wolff K, Austen KF, Goldsmith LA, Katz SI, et al. Book Reviews-Fitzpatrick’s Dermatology in general medicine. J Am Acad Dermatol. 2004;51:325.

    Article  Google Scholar 

  14. 14.

    James WD, Berger TG, Elston D. Andrews’ diseases of the skin: clinical dermatology. Saunders Elsevier; 2006, in, ISBN 0-7216-2921-0.

  15. 15.

    Alfred G. Antineoplastic agents. In: Hardman JG, Limbird LE, editors. The pharmacological basis of therapeutics. 11th ed. New York: McGraw-Hill: Medical Publishing Division; 2001. p. 1432–4.

    Google Scholar 

  16. 16.

    Jain S, Sapre R, Tiwary AK, Jain NK. Proultraflexible lipid vesicles for effective transdermal delivery of levonorgestrel: development, characterization, and performance evaluation. AAPS PharmSciTech. 2005;6:E513–22.

    PubMed Central  PubMed  Article  Google Scholar 

  17. 17.

    Prow TW, Grice JE, Lin LL, et al. Nanoparticles and microparticles for skin drug delivery. Adv Drug Deliv Rev. 2011;63:470–91.

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Delouise LA. Applications of nanotechnology in dermatology. J Invest Dermatol. 2012;132:964–75.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  19. 19.

    Taveira SF and Vianna Lopez RF. Topical administration of anticancer drugs for skin cancer treatment. In: La Porta C, editor. Topical Administration of anticancer drugs for skin cancer treatment. 2011. p. 247–272.

  20. 20.

    Jain S, Jain P, Umamaheshwari R, Jain N. Transfersomes—a novel vesicular carrier for enhanced transdermal delivery: development, characterization, and performance evaluation. Drug Dev Ind Pharm. 2003;29:1013–26.

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Mezei M, Gulasekharam V. Liposomes-A selective drug delivery system for the topical route of administration I. Lotion dosage form. Life Sci. 1980;26:1473–7.

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Rahimpour Y, Hamishehkar H. Niosomes as carrier in dermal drug delivery. Intech Open Access Publisher; 2012.

  23. 23.

    Le VH, Lippold BC. Influence of physicochemical properties of homologous esters of nicotinic acid on skin permeability and maximum flux. Int J Pharm. 1995;124:285–92.

    CAS  Article  Google Scholar 

  24. 24.

    Schreier H, Bouwstra J. Liposomes and niosomes as topical drug carriers: dermal and transdermal drug delivery. J Control Release. 1994;30:1–15.

    CAS  Article  Google Scholar 

  25. 25.

    Cevc G, Blume G, Schätzlein A. Transfersomes-mediated transepidermal delivery improves the regio-specificity and biological activity of corticosteroids in vivo. J Control Release. 1997;45:211–26.

    CAS  Article  Google Scholar 

  26. 26.

    Stolnik S, Davies MC, Illum L, Davis SS, Boustta M, Vert M. The preparation of sub-200 nm biodegradable colloidal particles from poly (β-malic acid-co-benzyl malate) copolymers and their surface modification with poloxamer and poloxamine surfactants. J Control Release. 1994;30:57–67.

    CAS  Article  Google Scholar 

  27. 27.

    Kuo PL, Okamoto M, Turro NJ. Photochemical methods for characterizing the nature of polymer aggregates in aqueous solutions and on a silica surface. J Phys Chem. 1987;91:2934–8.

    CAS  Article  Google Scholar 

  28. 28.

    Claesson P. Poly (ethylene oxide) surface coatings: relations between intermolecular forces, layer structure and protein repellency. Colloid Surf A. 1993;77:109–18.

    Article  Google Scholar 

  29. 29.

    Kim M-K, Chung S-J, Lee M-H, Shim C-K. Delivery of hydrocortisone from liposomal suspensions to the hairless mouse skin following topical application under non-occlusive and occlusive conditions. J Microencapsul. 1998;15:21–9.

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Seth AK, Misra A, Umrigar D. Topical liposomal gel of idoxuridine for the treatment of herpes simplex: pharmaceutical and clinical implications. Pharm Dev Technol. 2004;9:277–89.

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Contreras MF, Soriano MJ, Diéguez AR. In vitro percutaneous absorption of all-trans retinoic acid applied in free form or encapsulated in stratum corneum lipid liposomes. Int J Pharm. 2005;297:134–45.

    Article  CAS  Google Scholar 

  32. 32.

    Padamwar MN, Pokharkar VB. Development of vitamin loaded topical liposomal formulation using factorial design approach: drug deposition and stability. Int J Pharm. 2006;320:37–44.

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Singh R, Vyas S. Topical liposomal system for localized and controlled drug delivery. J Dermatol Sci. 1996;13:107–11.

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Glavas-Dodov M, Goracinova K, Mladenovska K, Fredro-Kumbaradzi E. Release profile of lidocaine HCl from topical liposomal gel formulation. Int J Pharm. 2002;242:381–4.

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Puglia C, Trombetta D, Venuti V, Saija A, Bonina F. Evaluation of in vivo topical anti‐inflammatory activity of indometacin from liposomal vesicles. J Pharm Pharmacol. 2004;56:1225–32.

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Carnali J, Naser M. The use of dilute solution viscometry to characterize the network properties of carbopol microgels. Colloid Polym Sci. 1992;270:183–93.

    CAS  Article  Google Scholar 

  37. 37.

    GarcíGonzález N, Kellaway I, Fuente HB, Igea SA, Charro BD, Espinar FO, et al. Influence of glycerol concentration and carbopol molecular weight on swelling and drug release characteristics of metoclopramide hydrogels. Int J Pharm. 1994;104:107–13.

    Article  Google Scholar 

  38. 38.

    Modi C, Bharadia P. Transfersomes: new dominants for transdermal drug delivery. Am J Pharmtech Res. 2012;2:71–91.

    Google Scholar 

  39. 39.

    Warner RR, Myers MC, Taylor DA. Electron probe analysis of human skin: determination of the water concentration profile. J Invest Dermatol. 1988;90:218–24.

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Cevc G, Marsh D. Phospholipid bilayers: physical principles and models. Cell biology (USA); (1987).

  41. 41.

    Cevc G. Molecular-force theory of solvation of the polar solutes—the mean field solvation model, its implications and examples from lipid water mixtures. Chem Scr. 1985;25:96–107.

    CAS  Google Scholar 

  42. 42.

    Cevc G. How membrane chain melting properties are regulated by the polar surface of the lipid bilayer. Biochemistry. 1987;26:6305–10.

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Simonetti LD, Gelfuso GM, Barbosa JC, Lopez RF. Assessment of the percutaneous penetration of cisplatin: the effect of monoolein and the drug skin penetration pathway. Eur J Pharm Biopharm. 2009;73:90–4.

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Anthony ML. Surgical treatment of nonmelanoma skin cancer. AORN J. 2000;71:550–64.

    Article  Google Scholar 

  45. 45.

    Alam M, Goldberg LH, Silapunt S, Gardner ES, Strom SS, Rademaker AW, et al. Delayed treatment and continued growth of nonmelanoma skin cancer. J Am Acad Dermatol. 2011;64:839–48.

    PubMed  Article  Google Scholar 

  46. 46.

    Rigel DS. Epidemiology of melanoma. In: Seminars in cutaneous medicine and surgery, WB Saunders; 2010. p. 204–209.

  47. 47.

    Franceschi S, Cristofolini M. Cutaneous malignant melanoma: epidemiological considerations. In: Seminars in surgical oncology. Wiley Online Library; 1992. p. 345–352.

  48. 48.

    Rivers JK. The detection and management of dysplastic nevi and early melanoma. World J Surg. 1992;16:166–72.

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Garland CF, Garland FC, Gorham ED. Rising trends in melanoma an hypothesis concerning sunscreen effectiveness. Ann Epidemiol. 1993;3:103–10.

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Markovic SN, Erickson LA, Rao RD, McWilliams RR, Kottschade LA, Creagan ET, et al. Malignant melanoma in the 21st century, part 1: epidemiology, risk factors, screening, prevention, and diagnosis. In: Mayo Clinic Proceedings. Elsevier; 2007. p. 364–380.

  51. 51.

    Brochez L, Naeyaert J. Understanding the trends in melanoma incidence and mortality: where do we stand? Eur J Dermatol. 2000;10:71–5.

    CAS  PubMed  Google Scholar 

  52. 52.

    Mulliken JS, Russak JE, Rigel DS. The effect of sunscreen on melanoma risk. Dermatol Clin. 2012;30:369–76.

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    Saladi RN, Persaud AN. The causes of skin cancer: a comprehensive review. Drugs Today. 2005;41:37–54.

    CAS  PubMed  Article  Google Scholar 

  54. 54.

    Leiter U, Garbe C. Epidemiology of melanoma and nonmelanoma skin cancer—the role of sunlight. In: Sunlight, vitamin D and skin cancer. Springer; 2008. p. 89–103.

  55. 55.

    Norval M, Lucas R, Cullen A, De Gruijl F, Longstreth J, Takizawa Y, et al. The human health effects of ozone depletion and interactions with climate change. Photochem Photobiol Sci. 2011;10:199–225.

    CAS  PubMed  Article  Google Scholar 

  56. 56.

    Nikolaou V, Stratigos A. Emerging trends in the epidemiology of melanoma. Br J Dermatol. 2014;170:11–9.

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    D’Orazio J, Jarrett S, Amaro-Ortiz A, Scott T. UV Radiation and the skin. Int J Mol Sci. 2013;14:12222–48.

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  58. 58.

    Flaherty KT, Puzanov I, Kim KB, Ribas A, McArthur GA, Sosman JA, et al. Inhibition of mutated, activated BRAF in metastatic melanoma. New Engl J Med. 2010;363:809–19.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  59. 59.

    Grant WB, Moan J, Reichrath J. Comment on The effects on human health from stratospheric ozone depletion and its interactions with climate change by M. Norval, AP Cullen, FR de Gruijl, J. Longstreth, Y. Takizawa, RM Lucas, FP Noonan and JC van der Leun, Photochem. Photobiol. Sci., 2007, 6, 232. Photochem Photobiol Sci. 2007;6:912–5.

    CAS  PubMed  Article  Google Scholar 

  60. 60.

    Norval M, Cullen A, De Gruijl F, Longstreth J, Takizawa Y, Lucas R, et al. The effects on human health from stratospheric ozone depletion and its interactions with climate change. Photochem Photobiol Sci. 2007;6:232–51.

    CAS  PubMed  Article  Google Scholar 

  61. 61.

    Runger TM. How different wavelengths of the ultraviolet spectrum contribute to skin carcinogenesis: the role of cellular damage responses. J Invest Dermatol. 2007;127:2103–5.

    PubMed  Article  CAS  Google Scholar 

  62. 62.

    Ridley AJ, Whiteside JR, McMillan TJ, Allinson SL. Cellular and sub-cellular responses to UVA in relation to carcinogenesis. Int J Radiat Biol. 2009;85:177–95.

    CAS  PubMed  Article  Google Scholar 

  63. 63.

    Lear J, Smith A, Strange R, Fryer A. Detoxifying enzyme genotypes and susceptibility to cutaneous malignancy. Br J Dermatol. 2000;142:8–15.

    CAS  PubMed  Article  Google Scholar 

  64. 64.

    Simoes M, Sousa J, Pais A. Skin cancer and new treatment perspectives: a review. Cancer Lett. 2015;357:8–42.

    CAS  PubMed  Article  Google Scholar 

  65. 65.

    Harwood CA, Surentheran T, McGregor JM, Spink PJ, Leigh IM, Breuer J, et al. Human papillomavirus infection and non‐melanoma skin cancer in immunosuppressed and immunocompetent individuals. J Med Virol. 2000;61:289–97.

    CAS  PubMed  Article  Google Scholar 

  66. 66.

    Asgari MM, Kiviat NB, Critchlow CW, Stern JE, Argenyi ZB, Raugi GJ, et al. Detection of human papillomavirus DNA in cutaneous squamous cell carcinoma among immunocompetent individuals. J Invest Dermatol. 2008;128:1409–17.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  67. 67.

    Dummer RG, Pittelkow MR, Iwatsuki K, Green A, Elwan NM. Skin cancer: a world-wide perspective. Springer; 2011.

  68. 68.

    Gordon R. Skin cancer: an overview of epidemiology and risk factors. In: Semin Oncol Nurs. Elsevier; 2013. p. 160–169.

  69. 69.

    Togsverd-Bo K, Sorensen S, Haedersdal M. Organ transplant recipients need intensive control and treatment of skin cancer. Ugeskr Laeger. 2013;175:1408–11.

    PubMed  Google Scholar 

  70. 70.

    Peters G. Tumor suppression for ARFicionados: the relative contributions of p16INK4a and p14ARF in melanoma. J Natl Cancer Inst. 2008;100:757–9.

    CAS  PubMed  Article  Google Scholar 

  71. 71.

    Zuo L, Weger J, Yang Q, Goldstein AM, Tucker MA, Walker GJ, et al. Germline mutations in the p16INK4a binding domain of CDK4 in familial melanoma. Nat Genet. 1996;12:97–9.

    CAS  PubMed  Article  Google Scholar 

  72. 72.

    Nickoloff BJ, Qin J-Z, Chaturvedi V, Bacon P, Panella J, Denning MF. Life and death signaling pathways contributing to skin cancer. In: J Invest Dermatol Symp Proc. Nature Publishing Group; 2002. p. 27–35.

  73. 73.

    Maira F, Catania A, Candido S, Erika Russo A, McCubrey JA, Libra M, et al. Molecular targeted therapy in melanoma: a way to reverse resistance to conventional drugs. Curr Dug Deliv. 2012;9:17–29.

    CAS  Article  Google Scholar 

  74. 74.

    Uribe P, Gonzalez S. Epidermal growth factor receptor (EGFR) and squamous cell carcinoma of the skin: molecular bases for EGFR-targeted therapy. Pathol Res Pract. 2011;207:337–42.

    CAS  PubMed  Article  Google Scholar 

  75. 75.

    Ling G, Ahmadian A, Persson A, Unden AB, Afink G, Williams C, et al. Patched and p53 gene alterations in sporadic and hereditary basal cell cancer. Oncogene. 2001;20:7770–8.

    CAS  PubMed  Article  Google Scholar 

  76. 76.

    Reichrath J. Molecular mechanisms of basal cell and squamous cell carcinomas. Springer Science & Business Media; 2007.

  77. 77.

    Elsas AV, Zerp SF, van der Flier S, Krüse K, Aarnoudse C, Hayward NK, et al. Relevance of ultraviolet-induced N-ras oncogene point mutations in development of primary human cutaneous melanoma. Am J Pathol. 1996;149:883.

    PubMed Central  PubMed  Google Scholar 

  78. 78.

    Aszterbaum M, Rothman A, Johnson RL, Fisher M, Xie J, Bonifas JM, et al. Identification of mutations in the human patched gene in sporadic basal cell carcinomas and in patients with the basal cell nevus syndrome. J Invest Dermatol. 1998;110:885–8.

    CAS  PubMed  Article  Google Scholar 

  79. 79.

    Hahn H, Wicking C, Zaphiropoulos PG, Gailani MR, Shanley S, Chidambaram A, et al. Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell. 1996;85:841–51.

    CAS  PubMed  Article  Google Scholar 

  80. 80.

    Rehman I, Takata M, Wu Y-Y, Rees JL. Genetic change in actinic keratoses. Oncogene. 1996;12:2483–90.

    CAS  PubMed  Google Scholar 

  81. 81.

    Quinn AG, Sikkink S, Rees JL. Basal cell carcinomas and squamous cell carcinomas of human skin show distinct patterns of chromosome loss. Cancer Res. 1994;54:4756–9.

    CAS  PubMed  Google Scholar 

  82. 82.

    Brash DE, Rudolph JA, Simon JA, Lin A, McKenna GJ, Baden HP, et al. A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma. Proc Natl Acad Sci U S A. 1991;88:10124–8.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  83. 83.

    Dumaz N, Stary A, Soussi T, Daya-Grosjean L, Sarasin A. Can we predict solar ultraviolet radiation as the causal event in human tumours by analysing the mutation spectra of the p53 gene? Mutat Res Fundam Mol Mech Mutagen. 1994;307:375–86.

    CAS  Article  Google Scholar 

  84. 84.

    Moles J, Moyret C, Guillot BE, Jeanteur P, Guilhou J, Theillet C, et al. p53 gene mutations in human epithelial skin cancers. Oncogene. 1993;8:583–8.

    CAS  PubMed  Google Scholar 

  85. 85.

    Kubo Y, Urano Y, Yoshimoto K, Iwahana H, Fukuhara K, Arase S, et al. p53 gene mutations in human skin cancers and precancerous lesions: comparison with immunohistochemical analysis. J Invest Dermatol. 1994;102:440–4.

    CAS  PubMed  Article  Google Scholar 

  86. 86.

    Pierceall WE, Goldberg LH, Tainsky MA, Mukhopadhyay T, Ananthaswamy HN. Ras gene mutation and amplification in human nonmelanoma skin cancers. Mol Carcinog. 1991;4:196–202.

    CAS  PubMed  Article  Google Scholar 

  87. 87.

    Spencer JM, Kahn SM, Jiang W, DeLeo VA, Weinstein IB. Activated ras genes occur in human actinic keratoses, premalignant precursors to squamous cell carcinomas. Arch Dermatol. 1995;131:796–800.

    CAS  PubMed  Article  Google Scholar 

  88. 88.

    Kubo Y, Urano Y, Matsumoto K, Ahsan K, Arase S. Mutations of the INK4a Locus in squamous cell carcinomas of human skin. Biochem Biophys Res Commun. 1997;232:38–41.

    CAS  PubMed  Article  Google Scholar 

  89. 89.

    Soufir N, Moles JP, Vilmer C, Moch C, Verola O, Rivet J, et al. P16 UV mutations in human skin epithelial tumors. Oncogene. 1999;18:5477–81.

    CAS  PubMed  Article  Google Scholar 

  90. 90.

    Garbe C, Peris K, Hauschild A, Saiag P, Middleton M, Spatz A, et al. Diagnosis and treatment of melanoma. European consensus-based interdisciplinary guideline–update 2012. Eur J Cancer. 2012;48:2375–90.

    PubMed  Article  Google Scholar 

  91. 91.

    Chakraborty R, Wieland CN, Comfere NI. Molecular targeted therapies in metastatic melanoma. Pharmacogenomics Pers Med. 2013;6:49.

    Google Scholar 

  92. 92.

    Heath CH, Deep NL, Nabell L, Carroll WR, Desmond R, Clemons L, et al. Phase 1 study of erlotinib plus radiation therapy in patients with advanced cutaneous squamous cell carcinoma. Int J Radiat Oncol Biol Phys. 2013;85:1275–81.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  93. 93.

    Ulrich J, Hartmann JT, Dorr W, Ugurel S. Skin toxicity of anti‐cancer therapy. J Der Deut Dermatol Gesells. 2008;6:959–75.

    Article  Google Scholar 

  94. 94.

    Jereczek-Fossa BA, Zarowski A, Milani F, Orecchia R. Radiotherapy-induced ear toxicity. Cancer Treat Rev. 2003;29:417–30.

    PubMed  Article  Google Scholar 

  95. 95.

    Bahner JD, Bordeaux JS. Non-melanoma skin cancers: photodynamic therapy, cryotherapy, 5-fluorouracil, imiquimod, diclofenac, or what? Facts and controversies. Clin Dermatol. 2013;31:792–8.

    PubMed  Article  Google Scholar 

  96. 96.

    Plichta K, Mackley HB. Radiotherapy for cutaneous malignancies of the head and neck. Oper Tech Otolaryngol Head Neck Surg. 2013;24:59–62.

    Article  Google Scholar 

  97. 97.

    Mandalà M, Massi D, De Giorgi V. Cutaneous toxicities of BRAF inhibitors: clinical and pathological challenges and call to action. Crit Rev Oncol Hematol. 2013;88:318–37.

    PubMed  Article  Google Scholar 

  98. 98.

    Kawczyk-Krupka A, Bugaj AM, Latos W, Zaremba K, Sieron A. Photodynamic therapy in treatment of cutaneous and choroidal melanoma. Photodiagn Photodyn Ther. 2013;S10:503–9.

    Article  CAS  Google Scholar 

  99. 99.

    Lacouture ME, Boerner SA, LoRusso PM. Non-rash skin toxicities associated with novel targeted therapies. Clin Lung Cancer. 2006;8:S36–42.

    CAS  PubMed  Article  Google Scholar 

  100. 100.

    Tran MA, Watts RJ, Robertson GP. Use of liposomes as drug delivery vehicles for treatment of melanoma. Pigment Cell Melanoma Res. 2009;22:388–99.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  101. 101.

    Hoelder S, Clarke PA, Workman P. Discovery of small molecule cancer drugs: successes, challenges and opportunities. Mol Oncol. 2012;6:155–76.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  102. 102.

    Barrera M, Herrera E. Topical chemotherapy for actinic keratosis and nonmelanoma skin cancer: current options and future perspectives. Actas Dermosifiliogr. 2007;98:556–62.

    CAS  PubMed  Article  Google Scholar 

  103. 103.

    Arias JL. Novel strategies to improve the anticancer action of 5-fluorouracil by using drug delivery systems. Molecules. 2008;13:2340–69.

    CAS  PubMed  Article  Google Scholar 

  104. 104.

    Perrotta RE, Giordano M, Malaguarnera M. Non-melanoma skin cancers in elderly patients. Crit Rev Oncol Hematol. 2011;80:474–80.

    PubMed  Article  Google Scholar 

  105. 105.

    Burns CA, Brown MD. Imiquimod for the treatment of skin cancer. Dermatol Clin. 2005;23:151–64.

    CAS  PubMed  Article  Google Scholar 

  106. 106.

    Bayerl C, Feller G, Goerdt S. Experience in treating molluscum contagiosum in children with imiquimod 5% cream. Br J Dermatol. 2003;149:25–8.

    CAS  PubMed  Article  Google Scholar 

  107. 107.

    Nagore E, Sevila A, Sanmartin O, Botella‐Estrada R, Requena C, Serra‐Guillen C, et al. Excellent response of basal cell carcinomas and pigmentary changes in xeroderma pigmentosum to imiquimod 5 % cream. Br J Dermatol. 2003;149:858–61.

    CAS  PubMed  Article  Google Scholar 

  108. 108.

    Berman B, Sullivan T, De Araujo T, Nadji M. Expression of Fas‐receptor on basal cell carcinomas after treatment with imiquimod 5% cream or vehicle. Br J Dermatol. 2003;149:59–61.

    CAS  PubMed  Article  Google Scholar 

  109. 109.

    Florez A, Feal C, de la Torre C, Cruces M. Invasive squamous cell carcinoma treated with imiquimod 5 % cream. Acta Derm Venereol. 2004;84:227–8.

    CAS  PubMed  Google Scholar 

  110. 110.

    Bianchi L, Campione E, Marulli G, Costanzo A, Chimenti S. Actinic keratosis treated with an immune response modifier: a case report of six patients. Clin Exp Dermatol. 2003;28:39–41.

    PubMed  Article  Google Scholar 

  111. 111.

    Arlette J. Treatment of Bowen’s disease and erythroplasia of Queyrat. Br J Dermatol. 2003;149:43–7.

    PubMed  Article  Google Scholar 

  112. 112.

    Ma M, Wang J, Guo F, Lei M, Tan F, Li N. Development of nanovesicular systems for dermal imiquimod delivery: physicochemical characterization and in vitro/in vivo evaluation. J Mater Sci Mater Med. 2015;26:192.

    Article  CAS  Google Scholar 

  113. 113.

    Galiczynski EM, Vidimos AT. Nonsurgical treatment of nonmelanoma skin cancer. Dermatol Clin. 2011;29:297–309.

    CAS  PubMed  Article  Google Scholar 

  114. 114.

    Tavano L, de Cindio B, Picci N, Ioele GI, Muzzalupo R. Drug compartmentalization as strategy to improve the physico-chemical properties of diclofenac sodium loaded niosomes for topical applications. Biomed Microdevices. 2014;16:1–858.

    Article  CAS  Google Scholar 

  115. 115.

    McGillis ST, Fein H. Topical treatment strategies for non-melanoma skin cancer and precursor lesions. In: Semin Cutan Med Surg. 2004. p. 174–183.

  116. 116.

    Lai PS, Lou PJ, Peng CL, Pai CL, Yen WN, Huang MY, et al. Doxorubicin delivery by polyamidoamine dendrimer conjugation and photochemical internalization for cancer therapy. J Control Release. 2007;122:39–46.

    CAS  PubMed  Article  Google Scholar 

  117. 117.

    Takeuchi Y, Ichikawa K, Yonezawa S, Kurohane K, Koishi T, Nango M, et al. Intracellular target for photo sensitization in cancer antiangiogenic photodynamic therapy mediated by polycation liposome. J Control Release. 2004;97:231–40.

    CAS  PubMed  Article  Google Scholar 

  118. 118.

    Lau K, Chopra S, Maitani Y. Entrapment of bleomycin in ultra-deformable liposomes. STP Pharm Sci. 2003;13:237–9.

    CAS  Google Scholar 

  119. 119.

    Kent LG, Hattor Y, Chopra S, O’Toole EA, Storey A, Nagai T, et al. Ultra-deformable liposomes containing bleomycin: in vitro stability and toxicity on human cutaneous keratinocyte cell lines. Int J Pharm. 2005;300:4–12.

    Article  CAS  Google Scholar 

  120. 120.

    Condit PT. On the site of action of amethopterin. Science. 1961;134:1421.

    Article  Google Scholar 

  121. 121.

    Hwang GC, Lin AY, Chen W, Sharpe RJ. Development and optimization of a methotrexate topical formulation. Drug Dev Ind Pharm. 1995;21:1941–52.

    CAS  Article  Google Scholar 

  122. 122.

    Trotta M, Peira E, Carlotti ME, Gallarate M. Deformable liposomes for dermal administration of methotrexate. Int J Pharm. 2004;270:119–25.

    CAS  PubMed  Article  Google Scholar 

  123. 123.

    Simonetti DDL, Gelfuso GM, Barbosa JCR, Lopez RFV. Assessment of the percutaneous penetration of cisplatin: the effect of monoolein and the drug skin penetration pathway. Eur J Pharm Biopharm. 2009;73:90–4.

    CAS  PubMed  Article  Google Scholar 

  124. 124.

    Boulikas T, Stathopoulos GP, Volakakis N, Vougiouka M. Systemic lipoplatin infusion results in preferential tumor uptake in human studies. Anticancer Res. 2005;25:3031–9.

    CAS  PubMed  Google Scholar 

  125. 125.

    García-Contreras L, Abu-Izza K, Lu DR. Biodegradable cisplatin microspheres for direct brain injection: preparation and characterization. Pharm Dev Technol. 1997;2:53–65.

    PubMed  Article  Google Scholar 

  126. 126.

    Tamura T, Fujita F, Tanimoto M, Koike M, Suzuki A, Fujita M, et al. Anti-tumor effect of intraperitoneal administration of cisplatin-loaded microspheres to human tumor xenografted nude mice. J Control Release. 2002;80:295–307.

    CAS  PubMed  Article  Google Scholar 

  127. 127.

    Chang BK, Guthrie TH, Hayakawa K, Gangarosa LP. A pilot study of iontophoretic cisplatin chemotherapy of basal and squamous cell carcinomas of the skin. Arch Dermatol. 1993;129:425–7.

    CAS  PubMed  Article  Google Scholar 

  128. 128.

    Avgoustakis K, Beletsi A, Panagi Z, Klepetsanis P, Karydas A, Ithakissios D. PLGA–mPEG nanoparticles of cisplatin: in vitro nanoparticle degradation, in vitro drug release and in vivo drug residence in blood properties. J Control Release. 2002;79:123–35.

    CAS  PubMed  Article  Google Scholar 

  129. 129.

    Fujiyama J, Nakase Y, Osaki K, Sakakura C, Yamagishi H, Hagiwara A. Cisplatin incorporated in microspheres: development and fundamental studies for its clinical application. J Control Release. 2003;89:397–408.

    CAS  PubMed  Article  Google Scholar 

  130. 130.

    Sahoo SK, Panda AK, Labhasetwar V. Characterization of porous PLGA/PLA microparticles as a scaffold for three dimensional growth of breast cancer cells. Biomacromolecules. 2005;6:1132–9.

    CAS  PubMed  Article  Google Scholar 

  131. 131.

    Kartalou M, Essigmann JM. Mechanisms of resistance to cisplatin. Mutat Res Fundam Mol Mech Mutagen. 2001;478:23–43.

    CAS  Article  Google Scholar 

  132. 132.

    Yan X, Gemeinhart RA. Cisplatin delivery from poly (acrylic acid-co-methyl methacrylate) microparticles. J Control Release. 2005;106:198–208.

    CAS  PubMed  Article  Google Scholar 

  133. 133.

    Kishimoto S, Kawazoe Y, Ikeno M, Fukushima S, Takeuchi Y. Continuous exposure to low-dose cisplatin and apoptosis. Biol Pharm Bull. 2005;28:1954–7.

    CAS  PubMed  Article  Google Scholar 

  134. 134.

    Fujisawa Y, Umebayashi Y, Ichikawa E, Kawachi Y, Otsuka F. Chemoradiation using low-dose cisplatin and 5-fluorouracil in locally advanced squamous cell carcinoma of the skin: a report of two cases. J Am Acad Dermatol. 2006;55:S81–5.

    PubMed  Article  Google Scholar 

  135. 135.

    Marques MPM. Platinum and palladium polyamine complexes as anticancer agents: the structural factor. ISRN Spectrosc. 2013, 287353 (2013). Hindawi Publishing Corporation.

  136. 136.

    Todd RC, Lippard SJ. Inhibition of transcription by platinum antitumor compounds. Metallomics. 2009;1:280–91.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  137. 137.

    Coluccia M, Natile G. Trans-platinum complexes in cancer therapy. Anti-cancer Agents Med Chem (Formerly current medicinal chemistry-anti-cancer agents). 2007;7:111–23.

    CAS  Article  Google Scholar 

  138. 138.

    Farrell NP. Preclinical perspectives on the use of platinum compounds in cancer chemotherapy. In: Semin Oncol. 2004; p. 1–9.

  139. 139.

    Phillips HI, Ronconi L, Sadler PJ. Photoinduced reactions of cis, trans, cis‐[PtIV (N3) 2 (OH) 2 (NH3) 2] with 1‐methylimidazole. Chem Eur J. 2009;15:1588–96.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  140. 140.

    Lippert B. Cisplatin: chemistry and biochemistry of a leading anticancer drug. Helv Chim Acta. 1999.

  141. 141.

    Fabbro C, Ali-Boucetta H, Da Ros T, Kostarelos K, Bianco A, Prato M. Targeting carbon nanotubes against cancer. Chem Commun. 2012;48:3911–26.

    CAS  Article  Google Scholar 

  142. 142.

    Craig GE, Brown SD, Lamprou DA, Graham D, Wheate NJ. Cisplatin-tethered gold nanoparticles that exhibit enhanced reproducibility, drug loading, and stability: a step closer to pharmaceutical approval? Inorg Chem. 2012;51:3490–7.

    CAS  PubMed  Article  Google Scholar 

  143. 143.

    Baruah B, Surin A. Interaction of liposome-encapsulated cisplatin with biomolecules. J Biol Inorg Chem. 2012;17:899–910.

    CAS  PubMed  Article  Google Scholar 

  144. 144.

    Ruiz-Sanchez P, Konig C, Ferrari S, Alberto R. Vitamin B12 as a carrier for targeted platinum delivery: in vitro cytotoxicity and mechanistic studies. J Biol Inorg Chem. 2011;16:33–44.

    CAS  PubMed  Article  Google Scholar 

  145. 145.

    Hostynek JJ, Hinz RS, Lorence CR, Price M, Guy RH. Metals and the skin. Crit Rev Toxicol. 1993;23:171–235.

    CAS  PubMed  Article  Google Scholar 

  146. 146.

    Staff K, Brown MB, Chilcott RP, Hider RC, Jones SA, Kong XL. Ga (III) complexes—the effect of metal coordination on potential systemic absorption after topical exposure. Toxicol Lett. 2011;202:155–60.

    CAS  PubMed  Article  Google Scholar 

  147. 147.

    Raaf JH, Krown SE, Pinsky CM, Cunningham‐Rundles W, Safai B, Oettgen HF. Treatment of Bowen’s disease with topical dinitrochlorobenzene and 5‐fluorouracil. Cancer. 1976;37:1633–42.

    CAS  PubMed  Article  Google Scholar 

  148. 148.

    Strange PR, Lang PG. Long-term management of basal cell nevus syndrome with topical tretinoin and 5-fluorouracil. J Am Acad Dermatol. 1992;27:842–5.

    CAS  PubMed  Article  Google Scholar 

  149. 149.

    Brenner S, Wolf R, Dascalu DI. Topical tretinoin treatment in basal cell carcinoma. J Dermatol Surg Oncol. 1993;19:264–6.

    CAS  PubMed  Article  Google Scholar 

  150. 150.

    Mir LM, Glass L, Sersa G, Teissià J, Domenge C, Miklavcic D, et al. Effective treatment of cutaneous and subcutaneous malignant tumours by electrochemotherapy. Br J Cancer. 1998;77:2336.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  151. 151.

    Sersa G, Stabuc B, Cemazar M, Jancar B, Miklavcic D, Rudolf Z. Electrochemotherapy with cisplatin: potentiation of local cisplatin antitumour effectiveness by application of electric pulses in cancer patients. Eur J Cancer. 1998;34:1213–8.

    CAS  PubMed  Article  Google Scholar 

  152. 152.

    Gibbs P, Gonzalez R, Lee LA, Walsh P. Medical management of cutaneous malignancies. Clin Dermatol. 2001;19:298–304.

    CAS  PubMed  Article  Google Scholar 

  153. 153.

    Roberts MS. Dermal absorption and toxicity assessment. CRC Press; 2007.

  154. 154.

    Luxenberg MN, Guthrie TH. Chemotherapy of basal cell and squamous cell carcinoma of the eyelids and periorbital tissues. Ophthalmology. 1986;93:504–10.

    CAS  PubMed  Article  Google Scholar 

  155. 155.

    Chang BK, Guthrie TH, Hayakawa K, Gangarosa LP. A pilot study of iontophoretic cisplatin chemotherapy of basal and squamous cell carcinomas of the skin. Arch Dermatol. 1993;129:425–7.

    CAS  PubMed  Article  Google Scholar 

  156. 156.

    Lopez RF, Bentley M, Delgado‐Charro MB, Salomon D, Bergh H, Lange N, et al. Enhanced delivery of 5‐aminolevulinic acid esters by iontophoresis in vitro. Photochem Photobiol. 2003;77:304–8.

    CAS  PubMed  Article  Google Scholar 

  157. 157.

    Gelfuso GM, Figueiredo FV, Gratieri T, Lopez RFV. The effects of pH and ionic strength on topical delivery of a negatively charged porphyrin (TPPS4). J Pharm Sci. 2008;97:4249–57.

    CAS  PubMed  Article  Google Scholar 

  158. 158.

    Lademann J, Richter H, Teichmann A, Otberg N, Blume-Peytavi U, Luengo J, et al. Nanoparticles–an efficient carrier for drug delivery into the hair follicles. Eur J Pharm Biopharm. 2007;66:159–64.

    CAS  PubMed  Article  Google Scholar 

  159. 159.

    Cevc G, Blume G. Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force. Biochim Biophys Acta Biomembr. 1992;1104:226–32.

    CAS  Article  Google Scholar 

  160. 160.

    Egbaria K, Weiner N. Topical application of liposomal preparations. Cosmet Toiletries. 1991;106:79–93.

    CAS  Google Scholar 

  161. 161.

    Foldvari M, Baca‐Estrada ME, He Z, Hu J, Attah‐Poku S, King M. Dermal and transdermal delivery of protein pharmaceuticals: lipid‐based delivery systems for interferon α. Biotechnol Appl Biochem. 1999;30:129–37.

    CAS  PubMed  Google Scholar 

  162. 162.

    Baca-Estrada ME, Foldvari M, Snider M, Harding K, Kournikakis B, Babiuk LA, et al. Intranasal immunization with liposome-formulated Yersinia pestis vaccine enhances mucosal immune responses. Vaccine. 2000;18:2203–11.

    CAS  PubMed  Article  Google Scholar 

  163. 163.

    Foldvari M, Moreland A. Clinical observations with topical liposome-encapsulated interferon alpha for the treatment of genital papillomavirus infections. J Liposome Res. 1997;7:115–26.

    CAS  Article  Google Scholar 

  164. 164.

    Breathnach A, Goodman T, Stolinski C, Gross M. Freeze-fracture replication of cells of stratum corneum of human epidermis. J Anat. 1973;114:65.

    PubMed Central  CAS  PubMed  Google Scholar 

  165. 165.

    Wertz PW, Swartzendruber DC, Kitko DJ, Madison KC, Downing DT. The role of the corneocyte lipid envelopes in cohesion of the stratum corneum. J Invest Dermatol. 1989;93:169–72.

    CAS  PubMed  Article  Google Scholar 

  166. 166.

    Foldvari M. Non-invasive administration of drugs through the skin: challenges in delivery system design. Pharm Sci Technol Today. 2000;3:417–25.

    CAS  PubMed  Article  Google Scholar 

  167. 167.

    Landmann L. Epidermal permeability barrier: transformation of lamellar granule-disks into intercellular sheets by a membrane-fusion process, a freeze-fracture study. J Invest Dermatol. 1986;87:202–9.

    CAS  PubMed  Article  Google Scholar 

  168. 168.

    Elias P, Williams M, Maloney M, Bonifas J, Brown B, Grayson S, et al. Stratum corneum lipids in disorders of cornification. Steroid sulfatase and cholesterol sulfate in normal desquamation and the pathogenesis of recessive X-linked ichthyosis. J Clin Invest. 1984;74:1414.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  169. 169.

    Menon GK, Grayson S, Elias PM. Cytochemical and biochemical localization of lipase and sphingomyelinase activity in mammalian epidermis. J Invest Dermatol. 1986;86:591–7.

    CAS  PubMed  Article  Google Scholar 

  170. 170.

    Elias PM, Feingold KR. Lipid‐related barriers and gradients in the epidermisa. Ann N Y Acad Sci. 1988;548:4–13.

    CAS  PubMed  Article  Google Scholar 

  171. 171.

    Jansen CT, Hopsu-Havu V. Proteolytic enzymes in the skin. 3. Studies on the extractability, stability and modifier characteristics of the caseinolytic enzymes in the rat skin. Acta Derm Venereol. 1969;49:525.

    CAS  PubMed  Google Scholar 

  172. 172.

    Mier P, HURK JJ. Lysosomal hydrolases of the epidermis. Br J Dermatol. 1975;93:1–10.

    CAS  PubMed  Article  Google Scholar 

  173. 173.

    Barry BW. Mode of action of penetration enhancers in human skin. J Control Release. 1987;6:85–97.

    CAS  Article  Google Scholar 

  174. 174.

    Lieb LM, Liimatta AP, Bryan RN, Brown BD, Krueger GG. Description of the intrafollicular delivery of large molecular weight molecules to follicles of human scalp skin in vitro. J Pharm Sci. 1997;86:1022–9.

    CAS  PubMed  Article  Google Scholar 

  175. 175.

    Goodman M, Barry BW. Lipid-protein-partitioning (LPP) theory of skin enhancer activity: finite dose technique. Int J Pharm. 1989;57:29–40.

    CAS  Article  Google Scholar 

  176. 176.

    Potts RO, Francoeur ML. The influence of stratum corneum morphology on water permeability. J Invest Dermatol. 1991;96:495–9.

    CAS  PubMed  Article  Google Scholar 

  177. 177.

    Mak VHW, Potts RO, Guy RH. Does hydration affect intercellular lipid organization in the stratum corneum? Pharm Res. 1991;8:1064–5.

    CAS  PubMed  Article  Google Scholar 

  178. 178.

    Walters KA, Hadgraft J. Pharmaceutical skin penetration enhancement. Informa Health Care; 1993.

  179. 179.

    Smith EW, Maibach HI. Percutaneous penetration enhancers. CRC Press; 1995.

  180. 180.

    Bommannan D, Potts RO, Guy RH. Examination of the effect of ethanol on human stratum corneum in vivo using infrared spectroscopy. J Control Release. 1991;16:299–304.

    CAS  Article  Google Scholar 

  181. 181.

    Lin CH, Aljuffali IA, Fang JY. Lasers as an approach for promoting drug delivery via skin. Expert Opin Drug Deliv. 2014;1–16.

  182. 182.

    Jacobi U, Toll R, Sterry W. Do follicles play a role as penetration pathways in in vitro studies on porcine skin?—an optical study. Laster Phys-Lawrence. 2005;15:1594–8.

    Google Scholar 

  183. 183.

    Liu P, Kurihara-Bergstrom T, Good WR. Cotransport of estradiol and ethanol through human skin in vitro: understanding the permeant/enhancer flux relationship. Pharm Res. 1991;8:938–44.

    CAS  PubMed  Article  Google Scholar 

  184. 184.

    Berner B, Juang RH, Mazzenga GC. Ethanol and water sorption into stratum corneum and model systems. J Pharm Sci. 1989;78:472–6.

    CAS  PubMed  Article  Google Scholar 

  185. 185.

    Johnson P, Lloyd-Jones JG. Drug delivery systems: fundamentals and techniques. Wiley; 1987.

  186. 186.

    Williams A, Barry B. Differential scanning calorimetry does not predict the activity of terpene penetration enhancers in human skin. J Pharm Pharmacol. 1990;42:156P.

    Article  Google Scholar 

  187. 187.

    Ashton P, Walters KA, Brain KR, Hadgraft J. Surfactant effects in percutaneous absorption I. Effects on the transdermal flux of methyl nicotinate. Int J Pharm. 1992;87:261–4.

    CAS  Article  Google Scholar 

  188. 188.

    Kushla GP, Zatz JL. Correlation of water and lidocaine flux enhancement by cationic surfactants in vitro. J Pharm Sci. 1991;80:1079–83.

    CAS  PubMed  Article  Google Scholar 

  189. 189.

    Patil S, Singh P, Sarasour K, Maibach H. Quantification of sodium lauryl sulfate penetration into the skin and underlying tissues after topical application—pharmacological and toxicological implications. J Pharm Sci. 1995;84:1240–4.

    CAS  PubMed  Article  Google Scholar 

  190. 190.

    Cornwell P, Barry B. The routes of penetration of ions and 5-fluorouracil across human skin and the mechanisms of action of terpene skin penetration enhancers. Int J Pharm. 1993;94:189–94.

    CAS  Article  Google Scholar 

  191. 191.

    Fartasch M, Schnetz E, Diepgen TL. Characterization of detergent-induced barrier alterations—effect of barrier cream on irritation. In: J Invest Dermatol Symp Proc. Nature Publishing Group; 1998. p. 121–127.

  192. 192.

    Hadgraft J, Pugh WJ. The selection and design of topical and transdermal agents: a review. In: J Invest Dermatol Symp Proc. Nature Publishing Group; 1998. p. 131–135.

  193. 193.

    Bouwstra J, Gooris G, Brussee J, Salomons-de Vries M, Bras W. The influence of alkyl-azones on the ordering of the lamellae in human stratum corneum. Int J Pharm. 1992;79:141–8.

    CAS  Article  Google Scholar 

  194. 194.

    Foldvari M, Gesztes A, Mezei M. Dermal drug delivery by liposome encapsulation: clinical and electron microscopic studies. J Microencapsul. 1990;7:479–89.

    CAS  PubMed  Article  Google Scholar 

  195. 195.

    Mahjour M, Mauser B, Rashidbaigi Z, Fawzi M. Effect of egg yolk lecithins and commercial soybean lecithins on in vitro skin permeation of drugs. J Control Release. 1990;14:243–52.

    CAS  Article  Google Scholar 

  196. 196.

    Kurosaki Y, Nagahara N, Tanizawa T, Nishimura H, Nakayama T, Kimura T. Use of lipid disperse systems in transdermal drug delivery: comparative study of flufenamic acid permeation among rat abdominal skin, silicon rubber membrane and stratum corneum sheet isolated from hamster cheek pouch. Int J Pharm. 1991;67:1–9.

    CAS  Article  Google Scholar 

  197. 197.

    Michel C, Purmann T, Mentrup E, Seiller E, Kreuter J. Effect of liposomes on percutaneous penetration of lipophilic materials. Int J Pharm. 1992;84:93–105.

    CAS  Article  Google Scholar 

  198. 198.

    Sentjurc M, Vrhovnik K, Kristl J. Liposomes as a topical delivery system: the role of size on transport studied by the EPR imaging method. J Control Release. 1999;59:87–97.

    CAS  PubMed  Article  Google Scholar 

  199. 199.

    Kirjavainen M, Mönkkönen J, Saukkosaari M, Valjakka-Koskela R, Kiesvaara J, Urtti A. Phospholipids affect stratum corneum lipid bilayer fluidity and drug partitioning into the bilayers. J Control Release. 1999;58:207–14.

    CAS  PubMed  Article  Google Scholar 

  200. 200.

    Weiner N, Williams N, Birch G, Ramachandran C, Shipman C, Flynn G. Topical delivery of liposomally encapsulated interferon evaluated in a cutaneous herpes guinea pig model. Antimicrob Agents Chemother. 1989;33:1217–21.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  201. 201.

    Pardeike J, Hommoss A, Müller RH. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int J Pharm. 2009;366:170–84.

    CAS  PubMed  Article  Google Scholar 

  202. 202.

    Kievit FM, Zhang M. Cancer nanotheranostics: improving imaging and therapy by targeted delivery across biological barriers. Adv Mater. 2011;23:H217–47.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  203. 203.

    Zhai Y, Zhai G. Advances in lipid-based colloid systems as drug carrier for topic delivery. J Control Release. 2014;193:90–9.

    CAS  PubMed  Article  Google Scholar 

  204. 204.

    Mehnert W, Mäder K. Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev. 2001;47:165–96.

    CAS  PubMed  Article  Google Scholar 

  205. 205.

    Puglia C, Bonina F. Lipid nanoparticles as novel delivery systems for cosmetics and dermal pharmaceuticals. Expert Opin Drug Deliv. 2012;9:429–41.

    CAS  PubMed  Article  Google Scholar 

  206. 206.

    Shibagaki N, Okamoto T, Mitsui H, Inozume T, Kanzaki M, Shimada S. Novel immunotherapeutic approaches to skin cancer treatments using protein transduction technology. J Dermatol Sci. 2011;61:153–61.

    CAS  PubMed  Article  Google Scholar 

  207. 207.

    Wadia JS, Dowdy SF. Protein transduction technology. Curr Opin Biotechnol. 2002;13:52–6.

    CAS  PubMed  Article  Google Scholar 

  208. 208.

    Noguchi H, Matsumoto S. Protein transduction technology: a novel therapeutic perspective. Acta Med Okayama. 2006;60:1.

    CAS  PubMed  Google Scholar 

  209. 209.

    Ford K, Souberbielle B, Darling D, Farzaneh F. Protein transduction: an alternative to genetic intervention? Gene Ther. 2001;8:1–4.

    CAS  PubMed  Article  Google Scholar 

  210. 210.

    Ciocca DR, Calderwood SK. Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones. 2005;10:86.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  211. 211.

    Verschoor ML, Ungard R, Harbottle A, Jakupciak JP, Parr R, Singh G. Mitochondria and cancer: past, present, and future. BioMed Res Int. 2013.

  212. 212.

    Calderwood SK. Molecular cochaperones: tumor growth and cancer treatment. Scientifica. 2013.

  213. 213.

    Kalogeraki A, Garbagnati F, Darivianaki K, Delides G, Santinami M, Stathopoulos E, et al. HSP-70, C-myc and HLA-DR expression in patients with cutaneous malignant melanoma metastatic in lymph nodes. Anticancer Res. 2006;26:3551–4.

    CAS  PubMed  Google Scholar 

  214. 214.

    Protti MP, Heltai S, Bellone M, Ferrarini M, Manfredi AA, Rugarli C. Constitutive expression of the heat shock protein 72 kDa in human melanoma cells. Cancer Lett. 1994;85:211–6.

    CAS  PubMed  Article  Google Scholar 

  215. 215.

    Schadendorf D. Gene-based therapy of malignant melanoma. In: Sem Oncol Elsevier. 2002. p. 503–512.

  216. 216.

    Sun Y, Schadendorf D. Gene-based immunotherapy of skin cancers. In: Cancers of the skin. Springer; 2002. p. 170–184.

  217. 217.

    Yi-chi MK, Flynn JC. Opportunistic autoimmune disorders potentiated by immune-checkpoint inhibitors anti-CTLA-4 and anti-PD-1. Front Immunol. 2014;5.

  218. 218.

    Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711–23.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  219. 219.

    Callahan MK, Wolchok JD. At the bedside: CTLA-4-and PD-1-blocking antibodies in cancer immunotherapy. J Leukoc Biol. 2013;94:41–53.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  220. 220.

    Wolchok JD, Hodi FS, Weber JS, Allison JP, Urba WJ, Robert C, et al. Development of ipilimumab: a novel immunotherapeutic approach for the treatment of advanced melanoma. Ann N Y Acad Sci. 2013;1291:1–13.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  221. 221.

    Kong YCM, Wei WZ, Tomer Y. Opportunistic autoimmune disorders. Ann N Y Acad Sci. 2010;1183:222–36.

    CAS  PubMed  Article  Google Scholar 

  222. 222.

    Choi KY, Saravanakumar G, Park JH, Park K. Hyaluronic acid-based nanocarriers for intracellular targeting: interfacial interactions with proteins in cancer. Colloids Surf B. 2012;99:82–94.

    CAS  Article  Google Scholar 

  223. 223.

    Platt VM, Szoka Jr FC. Anticancer therapeutics: targeting macromolecules and nanocarriers to hyaluronan or CD44, a hyaluronan receptor. Mol Pharm. 2008;5:474–86.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  224. 224.

    Sun H, Benjaminsen RV, Almdal K, Andresen TL. Hyaluronic acid immobilized polyacrylamide nanoparticle sensors for CD44 receptor targeting and pH measurement in cells. Bioconjug Chem. 2012;23:2247–55.

    CAS  PubMed  Article  Google Scholar 

  225. 225.

    Miller DL, Smith NB, Bailey MR, Czarnota GJ, Hynynen K, Makin IRS. Overview of therapeutic ultrasound applications and safety considerations. J Ultrasound Med. 2012;31:623–34.

    PubMed Central  PubMed  Google Scholar 

  226. 226.

    Wamel V, Bouakaz A, Bernard B, ten Cate F, de Jong N. Radionuclide tumour therapy with ultrasound contrast microbubbles. Ultrasonics. 2004;42:903–6.

    PubMed  Article  CAS  Google Scholar 

  227. 227.

    Grainger SJ, Serna JV, Sunny S, Zhou Y, Deng CX, El-Sayed ME. Pulsed ultrasound enhances nanoparticle penetration into breast cancer spheroids. Mol Pharm. 2010;7:2006–19.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  228. 228.

    Lavon J. Kost, Ultrasound and transdermal drug delivery. Drug Discov Today. 2004;9:670–6.

    CAS  PubMed  Article  Google Scholar 

  229. 229.

    Smith NB. Applications of ultrasonic skin permeation in transdermal drug delivery. 2008.

  230. 230.

    Kennedy JE. High-intensity focused ultrasound in the treatment of solid tumours. Nat Rev Cancer. 2005;5:321–7.

    CAS  PubMed  Article  Google Scholar 

  231. 231.

    Xing Y, Lu X, Pua EC, Zhong P. The effect of high intensity focused ultrasound treatment on metastases in a murine melanoma model. Biochem Biophys Res Commun. 2008;375:645–50.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  232. 232.

    Braakman R, Van der Valk P, Van Delft J, de Wolff-Rouendaal D, Oosterhuis J. The effects of ultrasonically induced hyperthermia on experimental tumors in the rabbit eye. Invest Ophthalmol Vis Sci. 1989;30:835–44.

    CAS  PubMed  Google Scholar 

  233. 233.

    Rao R, Nanda S. Sonophoresis: recent advancements and future trends. J Pharm Pharmacol. 2009;61:689–705.

    CAS  PubMed  Article  Google Scholar 

  234. 234.

    Landström FJ, Nilsson CO, Crafoord S, Reizenstein JA, Adamsson GBM, Lofgren LA. Electroporation therapy of skin cancer in the head and neck area. Dermatol Surg. 2010;36:1245–50.

    PubMed  Article  CAS  Google Scholar 

  235. 235.

    Kanikkannan N. Iontophoresis-based transdermal delivery systems. BioDrugs. 2002;16:339–47.

    CAS  PubMed  Article  Google Scholar 

  236. 236.

    Campana LG, Testori A, Mozzillo N, Rossi CR. Treatment of metastatic melanoma with electrochemotherapy. J Surg Oncol. 2014;109:301–7.

    CAS  PubMed  Article  Google Scholar 

  237. 237.

    Mali B, Jarm T, Snoj M, Sersa G, Miklavcic D. Antitumor effectiveness of electrochemotherapy: a systematic review and meta-analysis. Eur J Surg Oncol. 2013;39:4–16.

    CAS  PubMed  Article  Google Scholar 

  238. 238.

    Taveira SF, De Santana DC, Araújo LM, Marquele-Oliveira F, Nomizo A, Lopez RF. Effect of iontophoresis on topical delivery of doxorubicin-loaded solid lipid nanoparticles. J Biomed Nanotechnol. 2014;10:1382–90.

    CAS  PubMed  Article  Google Scholar 

  239. 239.

    Nuccitelli R, Chen X, Pakhomov AG, Baldwin WH, Sheikh S, Pomicter JL, et al. A new pulsed electric field therapy for melanoma disrupts the tumor’s blood supply and causes complete remission without recurrence. Int J Cancer. 2009;125:438–45.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  240. 240.

    Garon EB, Sawcer D, Vernier PT, Tang T, Sun Y, Marcu L, et al. In vitro and in vivo evaluation and a case report of intense nanosecond pulsed electric field as a local therapy for human malignancies. Int J Cancer. 2007;121:675–82.

    CAS  PubMed  Article  Google Scholar 

  241. 241.

    Guo F, Yao C, Li C, Mi Y, Peng Q, Tang J. In vivo evidences of nanosecond pulsed electric fields for melanoma malignancy treatment on tumor-bearing BALB/c nude mice. Technol Cancer Res Treat. 2014;13:337–44.

    CAS  PubMed  Google Scholar 

  242. 242.

    Zhang Z, Tsai PC, Ramezanli T, Michniak‐Kohn BB. Polymeric nanoparticles‐based topical delivery systems for the treatment of dermatological diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2013;5:205–18.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  243. 243.

    Coulman SA, Anstey A, Gateley C, Morrissey A, McLoughlin P, Allender C, et al. Microneedle mediated delivery of nanoparticles into human skin. Int J Pharm. 2009;366:190–200.

    CAS  PubMed  Article  Google Scholar 

  244. 244.

    Bhowmik T, D’Souza B, Shashidharamurthy R, Oettinger C, Selvaraj P, D’Souza MJ. A novel microparticulate vaccine for melanoma cancer using transdermal delivery. J Microencapsul. 2011;28:294–300.

    CAS  PubMed  Article  Google Scholar 

  245. 245.

    Lin MT, Pulkkinen L, Uitto J, Yoon K. The gene gun: current applications in cutaneous gene therapy. Int J Dermatol. 2000;39:161–70.

    CAS  PubMed  Article  Google Scholar 

  246. 246.

    Aravindaram K, Yang NS. Gene gun delivery systems for cancer vaccine approaches. In: Gene therapy of cancer. Springer; 2009. p. 167–178.

  247. 247.

    Zha Y, Lin C, Zhang S, Liang X, Zhang X, Fu M, et al. Antitumor effect of gene gun-mediated DNA vaccine pWRG-neu immunization in C57BL/6 mice. Chung Hua Chung Liu Tsa Chih. 2003;25:320–4.

    CAS  PubMed  Google Scholar 

  248. 248.

    Steitz J, Tüting T. Biolistic DNA vaccination against melanoma. In: Biolistic DNA Delivery. Springer; 2013. p. 317–337.

  249. 249.

    Dietrich A, Kraus K, Brinckmann U, Stockmar C, Müller A, Liebert UG, et al. Antitumoral and antimetastatic effects of continuous particle-mediated cytokine gene therapy. In: Molecular staging of cancer. Springer; 2003. p. 157–168.

  250. 250.

    Dietrich A, Kraus K, Brinckmann U, Friedrich T, Müller A, Liebert UG, et al. Complex cancer gene therapy in mice melanoma. Langenbecks Arch Surg. 2002;387:177–82.

    PubMed  Article  Google Scholar 

  251. 251.

    Zha Y, Lin C, Liang X. The use of gene gun in cancer gene therapy. Zhonghua yi xue za zhi. 2000;80:522–5.

    CAS  PubMed  Google Scholar 

  252. 252.

    Rochlitz CF. Gene therapy of cancer. Swiss Med Wkly. 2001;131:4–9.

    CAS  PubMed  Google Scholar 

  253. 253.

    Tanigawa K, Yu H, Sun R, Nickoloff BJ, Chang AE. Gene gun application in the generation of effector T cells for adoptive immunotherapy. Cancer Immunol Immunother. 2000;48:635–43.

    CAS  PubMed  Article  Google Scholar 

  254. 254.

    Antonio JR, Antonio CR, Cardeal ILS, Ballavenuto JMA, Oliveira JR. Nanotechnology in dermatology. An Bras Dermatol. 2014;89:126–36.

    PubMed Central  PubMed  Article  Google Scholar 

  255. 255.

    Dickerson EB, Dreaden EC, Huang X, El-Sayed IH, Chu H, Pushpanketh S, et al. Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Lett. 2008;269:57–66.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  256. 256.

    Camerin M, Rello‐Varona S, Villanueva A, Rodgers MA, Jori G. Metallo‐naphthalocyanines as photothermal sensitisers for experimental tumours: in vitro and in vivo studies. Lasers Surg Med. 2009;41:665–73.

    PubMed  Article  Google Scholar 

  257. 257.

    Khdair A, Chen D, Patil Y, Ma L, Dou QP, Shekhar MP, et al. Nanoparticle-mediated combination chemotherapy and photodynamic therapy overcomes tumor drug resistance. J Control Release. 2010;141:137–44.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  258. 258.

    Hoffmann C, Berganza C, Zhang J. Cold atmospheric plasma: methods of production and application in dentistry and oncology. Med Gas Res. 2013;3:21.

    PubMed Central  PubMed  Article  Google Scholar 

  259. 259.

    Arndt S, Wacker E, Li YF, Shimizu T, Thomas HM, Morfill GE, et al. Cold atmospheric plasma, a new strategy to induce senescence in melanoma cells. Exp Dermatol. 2013;22:284–9.

    CAS  PubMed  Article  Google Scholar 

  260. 260.

    Fridman G, Shereshevsky A, Jost MM, Brooks AD, Fridman A, Gutsol A, et al. Floating electrode dielectric barrier discharge plasma in air promoting apoptotic behavior in melanoma skin cancer cell lines. Plasma Chem Plasma Process. 2007;27:163–76.

    CAS  Article  Google Scholar 

  261. 261.

    Kim JY, Wei Y, Li J, Foy P, Hawkins T, Ballato J, et al. Single‐cell‐level microplasma cancer therapy. Small. 2011;7:2291–5.

    CAS  PubMed  Article  Google Scholar 

  262. 262.

    Keidar M, Walk R, Shashurin A, Srinivasan P, Sandler A, Dasgupta S, et al. Cold plasma selectivity and the possibility of a paradigm shift in cancer therapy. Br J Cancer. 2011;105:1295–301.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  263. 263.

    Kim G, Kim G, Park S, Jeon S, Seo H, Iza F, et al. Air plasma coupled with antibody-conjugated nanoparticles: a new weapon against cancer. J Phys D Appl Phys. 2009;42:032005.

    Article  CAS  Google Scholar 

  264. 264.

    Fang Y-P, Wu P-C, Tsai Y-H, Huang Y-B. Physicochemical and safety evaluation of 5-aminolevulinic acid in novel liposomes as carrier for skin delivery. J Liposome Res. 2008;18:31–45.

    CAS  PubMed  Article  Google Scholar 

  265. 265.

    De Rosa FS, Bentley MVL. Photodynamic therapy of skin cancers: sensitizers, clinical studies and future directives. Pharm Res. 2000;17:1447–55.

    PubMed  Article  Google Scholar 

  266. 266.

    Casas A, Perotti C, Saccoliti M, Sacca P, Fukuda H, del C Batlle A. ALA and ALA hexyl ester in free and liposomal formulations for the photosensitisation of tumour organ cultures. Br J Cancer. 2002;86:837–42.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  267. 267.

    Ellaithy H, El-Shaboury K. The development of Cutina lipogels and gel microemulsion for topical administration of fluconazole. AAPS PharmSciTech. 2002;3:77–85.

    PubMed Central  Article  Google Scholar 

  268. 268.

    Sanjay JB, Padsalg A, Patel K, Mokale V. Formulation, development and evaluation of fluconazole gel in various polymer bases. Asian J Pharm. 2007;1:63–8.

    Google Scholar 

  269. 269.

    Jadhav KR, Kadam VJ, Pisal SS. Formulation and evaluation of lecithin organogel for topical delivery of fluconazole. Curr Drug Deliv. 2009;6:174–83.

    CAS  PubMed  Article  Google Scholar 

  270. 270.

    Abdel-Mottaleb MM, Mortada N, El-Shamy A, Awad G. Physically cross-linked polyvinyl alcohol for the topical delivery of fluconazole. Drug Dev Ind Pharm. 2009;35:311–20.

    CAS  PubMed  Article  Google Scholar 

  271. 271.

    Jia Y, Joly H, Omri A. Liposomes as a carrier for gentamicin delivery: development and evaluation of the physicochemical properties. Int J Pharm. 2008;359:254–63.

    CAS  PubMed  Article  Google Scholar 

  272. 272.

    Manosroi A, Kongkaneramit L, Manosroi J. Stability and transdermal absorption of topical amphotericin B liposome formulations. Int J Pharm. 2004;270:279–86.

    CAS  PubMed  Article  Google Scholar 

  273. 273.

    Merclin N, Bender J, Sparr E, Guy R, Ehrsson H, Engström S. Transdermal delivery from a lipid sponge phase—iontophoretic and passive transport in vitro of 5-aminolevulinic acid and its methyl ester. J Control Release. 2004;100:191–8.

    CAS  PubMed  Article  Google Scholar 

  274. 274.

    Hurlimann A, Hänggi G, Panizzon R. Photodynamic therapy of superficial basal cell carcinomas using topical 5-aminolevulinic acid in a nanocolloid lotion. Dermatology (Basel, Switz). 1997;197:248–54.

    Google Scholar 

  275. 275.

    Cevc G. Transdermal drug delivery of insulin with ultradeformable carriers. Clin Pharmacokinet. 2003;42:461–74.

    CAS  PubMed  Article  Google Scholar 

  276. 276.

    Hofer C, Hartung R, Göbel R, Deering P, Lehmer A, Breul J. New ultradeformable drug carriers for potential transdermal application of Interleukin-2 and interferon—a theoretic and practical aspects. World J Surg. 2000;24:1187–9.

    CAS  PubMed  Article  Google Scholar 

  277. 277.

    Cevc G, Blume G. New, highly efficient formulation of diclofenac for the topical, transdermal administration in ultradeformable drug carriers, Transfersomes. Biomembranes. 2001;1514:191–205.

    CAS  Article  Google Scholar 

  278. 278.

    Maghraby GME, Williams AC, Barry BW. Skin delivery of oestradiol from deformable and traditional liposomes: mechanistic studies. J Pharm Pharmacol. 1999;51:1123–34.

    PubMed  Article  Google Scholar 

  279. 279.

    Bhatia A, Kumar R, Katare OP. Tamoxifen in topical liposomes: development, characterization and in-vitro evaluation. J Pharm Pharm Sci. 2004;7:252–9.

    CAS  PubMed  Google Scholar 

  280. 280.

    Jain S, Tiwary A, Jain N. Sustained and targeted delivery of an anti-HIV agent using elastic liposomal formulation: mechanism of action. Curr Drug Deliv. 2006;3:157–66.

    CAS  PubMed  Article  Google Scholar 

  281. 281.

    Trotta M, Peira E, Debernardi F, Gallarate M. Elastic liposomes for skin delivery of dipotassium glycyrrhizinate. Int J Pharm. 2002;241:319–27.

    CAS  PubMed  Article  Google Scholar 

  282. 282.

    Mishra D, Garg M, Dubey V, Jain S, Jain N. Elastic liposomes mediated transdermal delivery of an anti‐hypertensive agent: propranolol hydrochloride. J Pharm Sci. 2007;96:145–55.

    CAS  PubMed  Article  Google Scholar 

  283. 283.

    Dubey V, Mishra D, Asthana A, Jain NK. Transdermal delivery of a pineal hormone: melatonin via elastic liposomes. Biomaterials. 2006;27:3491–6.

    CAS  PubMed  Article  Google Scholar 

  284. 284.

    Gupta PN, Mishra V, Rawat A, Dubey P, Mahor S, Jain S, et al. Non-invasive vaccine delivery in transfersomes, niosomes and liposomes: a comparative study. Int J Pharm. 2005;293:73–82.

    CAS  PubMed  Article  Google Scholar 

  285. 285.

    Godin B, Touitou E. Mechanism of bacitracin permeation enhancement through the skin and cellular membranes from an ethosomal carrier. J Control Release. 2004;94:365–79.

    CAS  PubMed  Article  Google Scholar 

  286. 286.

    Oh YK, Kim MY, Shin JY, Kim TW, Yun MO, Yang SJ, et al. Skin permeation of retinol in tween 20‐based deformable liposomes: in-vitro evaluation in human skin and keratinocyte models. J Pharm Pharmacol. 2006;58:161–6.

    CAS  PubMed  Article  Google Scholar 

  287. 287.

    Trotta M, Peira E, Carlotti ME, Gallarate M. Deformable liposomes for dermal administration of methotrexate. Int J Pharm. 2004;270:119–25.

    CAS  PubMed  Article  Google Scholar 

  288. 288.

    El Maghraby GM, Williams AC, Barry BW. Skin delivery of 5‐fluorouracil from ultradeformable and standard liposomes in-vitro. J Pharm Pharmacol. 2001;53:1069–77.

    PubMed  Article  Google Scholar 

  289. 289.

    Cui SX, Nie SF, Li L, Wang CG, Pan WS, Sun JP. Preparation and evaluation of self-microemulsifying drug delivery system containing vinpocetine. Drug Dev Ind Pharm. 2009;35:603–11.

    CAS  PubMed  Article  Google Scholar 

  290. 290.

    Bai C, Peng H, Xiong H, Liu Y, Zhao L, Xiao X. Carboxymethylchitosan-coated proliposomes containing coix seed oil: characterisation, stability and in vitro release evaluation. Food Chem. 2011;129:1695–702.

    CAS  Article  Google Scholar 

  291. 291.

    Zhang JP, Wei YH, Zhou Y, Li YQ, Wu XA. Ethosomes, binary ethosomes and transfersomes of terbinafine hydrochloride: a comparative study. Arch Pharm Res. 2012;35:109–17.

    PubMed  Article  CAS  Google Scholar 

  292. 292.

    Chaudhary H, Kohli K, Kumar V. Nano-transfersomes as a novel carrier for transdermal delivery. Int J Pharm. 2013;454:367–80.

    CAS  PubMed  Article  Google Scholar 

  293. 293.

    Zheng W, Sheng Y, Zhang Y, Fang X, Wang L. Pharmacokinetic study of lappaconitine hydrobromide transfersomes in rats by LC-MS. Pharm Anal Acta. 2013;4:2.

    Google Scholar 

  294. 294.

    Sarwa KK, Mazumder B, Rudrapal M, Verma VK. Potential of capsaicin-loaded transfersomes in arthritic rats. Drug Deliv. 2014;1–9.

  295. 295.

    Ahmed S, El-Setouhy DA, Badawi AAE-L, El-Nabarawi MA. Provesicular granisetron hydrochloride buccal formulations: In vitro evaluation and preliminary investigation of in vivo performance. Eur J Pharm Sci. 2014;60:10–23.

    CAS  PubMed  Article  Google Scholar 

  296. 296.

    Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov. 2005;4:145–60.

    CAS  PubMed  Article  Google Scholar 

  297. 297.

    Queille-Roussel C, Poncet M, Mesaros S, Clucas A, Baker M, Soloff A-M. Comparison of the cumulative irritation potential of adapalene gel and cream with that of erythromycin/tretinoin solution and gel and erythromycin/isotretinoin gel. Clin Ther. 2001;23:205–12.

    CAS  PubMed  Article  Google Scholar 

  298. 298.

    Hofer C, Randenborgh HV, Lehmer A, Hartung R, Breul J. Transcutaneous IL-2 uptake mediated by Transfersomes® depends on concentration and fractionated application. Cytokine. 2004;25:141–6.

    CAS  PubMed  Article  Google Scholar 

  299. 299.

    Paul A, Cevc G, Bachhawat B. Transdermal immunisation with an integral membrane component, gap junction protein, by means of ultradeformable drug carriers, transfersomes. Vaccine. 1998;16:188–95.

    CAS  PubMed  Article  Google Scholar 

  300. 300.

    Cevc G, Blume G. Hydrocortisone and dexamethasone in very deformable drug carriers have increased biological potency, prolonged effect, and reduced therapeutic dosage. Biomembranes. 2004;1663:61–73.

    CAS  Article  Google Scholar 

  301. 301.

    Cevc G, Blume G. Biological activity and characteristics of triamcinolone-acetonide formulated with the self-regulating drug carriers, Transfersomes®. Biomembranes. 2003;1614:156–64.

    CAS  Article  Google Scholar 

  302. 302.

    Oku N. Anticancer therapy using glucuronate modified long-circulating liposomes. Adv Drug Deliv Rev. 1999;40:63–73.

    CAS  PubMed  Article  Google Scholar 

  303. 303.

    Fukuda H, Paredes S, Batlle A. Tumor-localizing properties of porphyrins. In vitro studies using the porphyrin precursor, aminolevulinic acid, in free and liposome encapsulated forms. Drug Des Deliv. 1989;5:133–9.

    CAS  PubMed  Google Scholar 

  304. 304.

    Uchegbu IF, Vyas SP. Non-ionic surfactant based vesicles (niosomes) in drug delivery. Int J Pharm. 1998;172:33–70.

    CAS  Article  Google Scholar 

  305. 305.

    Manconi M, Sinico C, Valenti D, Lai F, Fadda AM. Niosomes as carriers for tretinoin: III. A study into the in vitro cutaneous delivery of vesicle-incorporated tretinoin. Int J Pharm. 2006;311:11–9.

    CAS  PubMed  Article  Google Scholar 

  306. 306.

    Foong W, Harsanyi B, Mezei M. Biodisposition and histological evaluation of topically applied retinoic acid in liposomal, cream and gel dosage forms. In: Phospholipids. Springer; 1990. p. 279–282.

  307. 307.

    Sinico C, Manconi M, Peppi M, Lai F, Valenti D, Fadda AM. Liposomes as carriers for dermal delivery of tretinoin: in vitro evaluation of drug permeation and vesicle–skin interaction. J Control Release. 2005;103:123–36.

    CAS  PubMed  Article  Google Scholar 

  308. 308.

    Plessis JD, Egbaria K, Ramachandran C, Weiner N. Topical delivery of liposomally encapsulated gamma-interferon. Antivir Res. 1992;18:259–65.

    PubMed  Article  Google Scholar 

  309. 309.

    Raber AS, Mittal A, Schäfer J. Quantification of nanoparticle uptake into hair follicles in pig ear and human forearm. J Control Release. 2014;179:25–32.

    CAS  PubMed  Article  Google Scholar 

  310. 310.

    Agarwal R, Katare O, Vyas S. Preparation and in vitro evaluation of liposomal/niosomal delivery systems for antipsoriatic drug dithranol. Int J Pharm. 2001;228:43–52.

    CAS  PubMed  Article  Google Scholar 

  311. 311.

    Tabbakhian M, Tavakoli N, Jaafari MR, Daneshamouz S. Enhancement of follicular delivery of finasteride by liposomes and niosomes: 1. In vitro permeation and in vivo deposition studies using hamster flank and ear models. Int J Pharm. 2006;323:1–10.

    CAS  PubMed  Article  Google Scholar 

  312. 312.

    Junginger H, Hofland H, Bouwstra J. Liposomes and niosomes: Interactions with human skin. Cosmet Toiletries. 1991;106:45–50.

    CAS  Google Scholar 

  313. 313.

    Muller R, Mehnert W, Souto EB. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for dermal delivery. Drugs Pharm Sci. 2005;155:719.

    Article  Google Scholar 

  314. 314.

    Muller R, Radtke M, Wissing S. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev. 2002;54:S131–55.

    CAS  PubMed  Article  Google Scholar 

  315. 315.

    Schafer-Korting M, Mehnert W. Delivery of lipophilic compounds with lipid nanoparticles—applications in dermatics and for transdermal therapy. In: Nastruzzi C, editor. Lipospheres in drug targets and delivery. Approaches, methods and applications. Boca Raton: CRC Press; 2005. p. 127–42.

    Google Scholar 

  316. 316.

    Chauhan AS, Sridevi S, Chalasani KB, Jain AK, Jain SK, Jain N, et al. Dendrimer-mediated transdermal delivery: enhanced bioavailability of indomethacin. J Control Release. 2003;90:335–43.

    CAS  PubMed  Article  Google Scholar 

  317. 317.

    Jelvehgari M, Siahi-Shadbad M, Azarmi S, Martin GP, Nokhodchi A. The microsponge delivery system of benzoyl peroxide: preparation, characterization and release studies. Int J Pharm. 2006;308:124–32.

    CAS  PubMed  Article  Google Scholar 

  318. 318.

    Shim J, Kang HS, Park W-S, Han S-H, Kim J, Chang I-S. Transdermal delivery of mixnoxidil with block copolymer nanoparticles. J Control Release. 2004;97:477–84.

    CAS  PubMed  Article  Google Scholar 

  319. 319.

    Wang Z, Itoh Y, Hosaka Y, Kobayashi I, Nakano Y, Maeda I, et al. Novel transdermal drug delivery system with polyhydroxyalkanoate and starburst polyamidoamine dendrimer. J Biosci Bioeng. 2003;95:541–3.

    CAS  PubMed  Article  Google Scholar 

  320. 320.

    Wester RC, Patel R, Nacht S, Leyden J, Melendres J, Maibach H. Controlled release of benzoyl peroxide from a porous microsphere polymeric system can reduce topical irritancy. J Am Acad Dermatol. 1991;24:720–6.

    CAS  PubMed  Article  Google Scholar 

  321. 321.

    Cevc G. Lipid vesicles and other colloids as drug carriers on the skin. Adv Drug Deliv Rev. 2004;56:675–711.

    CAS  PubMed  Article  Google Scholar 

  322. 322.

    Yarosh DB. Liposomes in investigative dermatology. Photodermatol Photoimmunol Photomed. 2001;17:203–12.

    CAS  PubMed  Article  Google Scholar 

  323. 323.

    Mueller RH, Maeder K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery–A review of the state of the art. Eur J Pharm Biopharm. 2000;50:161–77.

    Article  Google Scholar 

  324. 324.

    Muller R, Mehnert W, Lucks J-S, Schwarz C, Zur Mühlen A, Meyhers H, et al. Solid lipid nanoparticles (SLN): an alternative colloidal carrier system for controlled drug delivery. Eur J Pharm Biopharm. 1995;41:62–9.

    CAS  Google Scholar 

  325. 325.

    Siekmann B, Westesen K. Submicron-sized parenteral carrier systems based on solid lipids. Pharm Pharmacol Lett. 1992;1:123–6.

    CAS  Google Scholar 

  326. 326.

    Kreilgaard M. Influence of microemulsions on cutaneous drug delivery. Adv Drug Deliv Rev. 2002;54:S77–98.

    CAS  PubMed  Article  Google Scholar 

  327. 327.

    Subramanian N, Ghosal SK, Moulik S. Enhanced in vitro percutaneous absorption and in vivo anti-inflammatory effect of a selective cyclooxygenase inhibitor using microemulsion. Drug Dev Ind Pharm. 2005;31:405–16.

    CAS  PubMed  Article  Google Scholar 

  328. 328.

    Schwarz C. Solid lipid nanoparticles (SLN) for controlled drug delivery II. Drug incorporation and physicochemical characterization. J Microencapsul. 1999;16:205–13.

    CAS  PubMed  Article  Google Scholar 

  329. 329.

    Li J, Wang Y, Liang R, An X, Wang K, Shen G, et al. Recent advances in targeted nanoparticles drug delivery to melanoma. Nanomed: Nanotechnol Biol Med. 2014.

  330. 330.

    Cevc G. Transfersomes, liposomes and other lipid suspensions on the skin: permeation enhancement, vesicle penetration, and transdermal drug delivery. Crit Rev Ther Drug Carrier Syst. 1996;13.

  331. 331.

    Zhai Y, Zhai G. Advances in lipid-based colloid systems as drug carrier for topic delivery. J Control Release. 2014. doi:10.1016/j.jconrel.2014.05.054.

    PubMed  Google Scholar 

  332. 332.

    Wang S, Kara M, Krishnan TR. Transdermal delivery of cyclosporin-A using electroporation. J Control Release. 1998;50:61–70.

    CAS  PubMed  Article  Google Scholar 

  333. 333.

    Cevc G, Gebauer D. Hydration-driven transport of deformable lipid vesicles through fine pores and the skin barrier. Biophys J. 2003;84:1010–24.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  334. 334.

    Schatzlein A, Cevc G. Non-uniform cellular packing of the stratum corneum and permeability barrier function of intact skin: a high-resolution confocal laser scanning microscopy study using highly deformable vesicles (Transfersomes). Br J Dermatol. 1998;138:583–92.

    CAS  PubMed  Article  Google Scholar 

  335. 335.

    Fesq H, Hutzler P, Richardsen H, Cevc G, Ring J, Abeck D. Detection of transepidermal intercluster gaps in human epidermis with die heip of highly deformable lipid vesicles (Transfersomes) and confocal laser scanning microscopy. Arch Dermatol Res. 1999;291:130.

    Google Scholar 

  336. 336.

    Gevc G, Blume G. Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force. Biomembranes. 1992;1104:226–32.

    Article  Google Scholar 

  337. 337.

    Vrhovnik K, Kristl J, Šentjurc M, Šmid-Korbar J. Influence of liposome bilayer fluidity on the transport of encapsulated substance into the skin as evaluated by EPR. Pharm Res. 1998;15:525–30.

    CAS  PubMed  Article  Google Scholar 

  338. 338.

    Fesq H, Glockner A, Abeck D, Ring J, Lehmann J, Rother M, et al. Improved risk-benefit ratio for a triamcinolone acetonide Transfersome (R) formulation in comparison to a commercial triamcinolone acetonide formulation. In: J Invest Dermatol. Blackwell Science Inc 350 Main st, Malden, Ma 02148 USA; 2000. p. 590–590.

  339. 339.

    Ning M, Guo Y, Pan H, Chen X, Gu Z. Preparation, in vitro and in vivo evaluation of liposomal/niosomal gel delivery systems for clotrimazole. Drug Dev Ind Pharm. 2005;31:375–83.

    CAS  PubMed  Article  Google Scholar 

  340. 340.

    Pavelic Z, Skalko-Basnet N, Schubert R. Liposomal gels for vaginal drug delivery. Int J Pharm. 2001;219:139–49.

    CAS  PubMed  Article  Google Scholar 

  341. 341.

    Pandey M, Belgamwar V, Gattani S, Surana S, Tekade A. Pluronic lecithin organogel as a topical drug delivery system. Drug Deliv. 2010;17:38–47.

    CAS  PubMed  Article  Google Scholar 

  342. 342.

    Dhiman M, Yedurkar P, Sawant KK. Formulation, characterization, and in vitro evaluation of bioadhesive gels containing 5-fluorouracil. Pharm Dev Technol. 2008;13:15–25.

    CAS  PubMed  Article  Google Scholar 

  343. 343.

    Cevc G. Drug delivery across the skin. Exp Opin Invest Drugs. 1997;6:1887–937.

    CAS  Article  Google Scholar 

  344. 344.

    Willimann H, Walde P, Luisi P, Gazzaniga A, Stroppolo F. Lecithin organogel as matrix for transdermal transport of drugs. J Pharm Sci. 1992;81:871–4.

    CAS  PubMed  Article  Google Scholar 

  345. 345.

    Yen Moore A. Clinical applications for topical 5-fluorouracil in the treatment of dermatological disorders. J Dermatol Treat. 2009;20:328–35.

    CAS  Article  Google Scholar 

  346. 346.

    Makdsi F, DeVersa R. Inflammation of actinic keratosis with combination of alkylating and taxane agents: a case report. Cases J. 2009;2.

  347. 347.

    Khandavilli S, Panchagnula R. Nanoemulsions as versatile formulations for paclitaxel delivery: peroral and dermal delivery studies in rats. J Invest Dermatol. 2007;127:154–62.

    CAS  PubMed  Article  Google Scholar 

  348. 348.

    Singh S, Dash AK. Paclitaxel in cancer treatment: perspectives and prospects of its delivery challenges. Crit Rev Ther Drug Carrier Syst. 2009;26.

  349. 349.

    Cosco D, Celia C, Cilurzo F, Trapasso E, Paolino D. Colloidal carriers for the enhanced delivery through the skin. 2008.

  350. 350.

    Touitou E, Dayan N, Bergelson L, Godin B, Eliaz M. Ethosomes—novel vesicular carriers for enhanced delivery: characterization and skin penetration properties. J Control Release. 2000;65:403–18.

    CAS  PubMed  Article  Google Scholar 

  351. 351.

    Lodzki M, Godin B, Rakou L, Mechoulam R, Gallily R, Touitou E. Cannabidiol—transdermal delivery and anti-inflammatory effect in a murine model. J Control Release. 2003;93:377–87.

    CAS  PubMed  Article  Google Scholar 

  352. 352.

    Ainbinder D, Paolino D, Fresta M, Touitou E. Drug delivery applications with ethosomes. J Biomed Nanotechnol. 2010;6:558–68.

    CAS  PubMed  Article  Google Scholar 

  353. 353.

    Paolino D, Lucania G, Mardente D, Alhaique F, Fresta M. Ethosomes for skin delivery of ammonium glycyrrhizinate: in vitro percutaneous permeation through human skin and in vivo anti-inflammatory activity on human volunteers. J Control Release. 2005;106:99–110.

    CAS  PubMed  Article  Google Scholar 

  354. 354.

    Godin B, Touitou E. Ethosomes: new prospects in transdermal delivery. Crit Rev Ther Drug Carrier Syst. 20 2003.

  355. 355.

    Patil Y, Sadhukha T, Ma L, Panyam J. Nanoparticle-mediated simultaneous and targeted delivery of paclitaxel and tariquidar overcomes tumor drug resistance. J Control Release. 2009;136:21–9.

    CAS  PubMed  Article  Google Scholar 

  356. 356.

    Chavanpatil MD, Patil Y, Panyam J. Susceptibility of nanoparticle-encapsulated paclitaxel to P-glycoprotein-mediated drug efflux. Int J Pharm. 2006;320:150–6.

    CAS  PubMed  Article  Google Scholar 

  357. 357.

    Patil YB, Toti US, Khdair A, Ma L, Panyam J. Single-step surface functionalization of polymeric nanoparticles for targeted drug delivery. Biomaterials. 2009;30:859–66.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  358. 358.

    Barot BS, Parejiya PB, Patel HK, Gohel MC, Shelat PK. Microemulsion-based gel of terbinafine for the treatment of onychomycosis: optimization of formulation using D-optimal design. AAPS PharmSciTech. 2012;13:184–92.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  359. 359.

    Rao G, Murthy R. Evaluation of liposomal clobetasol propionate topical formulation for intra-dermal delivery. Ind J Pharm Sci. 2000;62:459.

    Google Scholar 

  360. 360.

    Zhu W, Guo C, Yu A, Gao Y, Cao F, Zhai G. Microemulsion-based hydrogel formulation of penciclovir for topical delivery. Int J Pharm. 2009;378:152–8.

    CAS  PubMed  Article  Google Scholar 

  361. 361.

    Dubey V, Mishra D, Jain N. Melatonin loaded ethanolic liposomes: physicochemical characterization and enhanced transdermal delivery. Eur J Pharm Biopharm. 2007;67:398–405.

    CAS  PubMed  Article  Google Scholar 

  362. 362.

    Dubey V, Mishra D, Dutta T, Nahar M, Saraf D, Jain N. Dermal and transdermal delivery of an anti-psoriatic agent via ethanolic liposomes. J Control Release. 2007;123:148–54.

    CAS  PubMed  Article  Google Scholar 

  363. 363.

    Campbell RB. Positively-charged liposomes for targeting tumor vasculature. Nano technology for cancer therapy, CRC Press, Taylor & Francis; 2007. 613p.

  364. 364.

    Hoeller S, Sperge A, Valenta C. Lecithin based nanoemulsions: a comparative study of the influence of non-ionic surfactants and the cationic phytosphingosine on physicochemical behaviour and skin permeation. Int J Pharm. 2009;370:181–6.

    CAS  PubMed  Article  Google Scholar 

  365. 365.

    Geusens B, Lambert J, De Smedt S, Buyens K, Sanders N, Van Gele M. Ultradeformable cationic liposomes for delivery of small interfering RNA (siRNA) into human primary melanocytes. J Control Release. 2009;133:214–20.

    CAS  PubMed  Article  Google Scholar 

  366. 366.

    Song YK, Kim CK. Topical delivery of low-molecular-weight heparin with surface-charged flexible liposomes. Biomaterials. 2006;27:271–80.

    CAS  PubMed  Article  Google Scholar 

  367. 367.

    Ringsdorf H, Schlarb B, Venzmer J. Molecular architecture and function of polymeric oriented systems: models for the study of organization, surface recognition, and dynamics of biomembranes. Angew Chem Int Ed Eng. 1988;27:113–58.

    Article  Google Scholar 

  368. 368.

    Sou K, Endo T, Takeoka S, Tsuchida E. Poly (ethylene glycol)-modification of the phospholipid vesicles by using the spontaneous incorporation of poly (ethylene glycol)-lipid into the vesicles. Bioconjug Chem. 2000;11:372–9.

    CAS  PubMed  Article  Google Scholar 

  369. 369.

    M.C. Woodle, G. Storm, Long circulating liposomes: Old drugs, new therapeutics, Springer Science & Business Media, 1997.

  370. 370.

    Woodle MC, Newman MS, Working PK. Biological properties of sterically stabilized liposomes, Stealth liposomes, (1995) 103–117.

  371. 371.

    Kostarelos K, Luckham P, Tadros TF. Addition of block copolymers to liposomes prepared using soybean lecithin. Effects on formation, stability and the specific localization of the incorporated surfactants investigated. J Liposome Res. 1995;5:117–30.

    CAS  Article  Google Scholar 

  372. 372.

    Kostarelos K, Luckham P, Tadros TF. Addition of (tri-) block copolymers to phospholipid vesicles: a study of the molecular morphology and structure by using hydrophobic dye molecules as bilayer probes. J Colloid Inter Sci. 1997;191:341–8.

    CAS  Article  Google Scholar 

  373. 373.

    Kostarelos K, Luckham PF, Tadros TF. Steric stabilization of phospholipid vesicles by block copolymers vesicle flocculation and osmotic swelling caused by monovalent and divalent cations. J Chem Soc Faraday Trans. 1998;94:2159–68.

    CAS  Article  Google Scholar 

  374. 374.

    Kostarelos K, Kipps M, Tadros TF, Luckham P. Molecular structure and conformation in phospholipid vesicles sterically stabilized by (tri)-block copolymers investigated by multi-nuclear magnetic resonance techniques. Colloids Surf A Physicochem Eng Asp. 1998;136:1–9.

    CAS  Article  Google Scholar 

  375. 375.

    Kostarelos K, Tadros TF, Luckham P. Physical conjugation of (tri-) block copolymers to liposomes toward the construction of sterically stabilized vesicle systems. Langmuir. 1999;15:369–76.

    CAS  Article  Google Scholar 

  376. 376.

    Johnsson M, Silvander M, Karlsson G, Edwards K. Effect of PEO-PPO-PEO triblock copolymers on structure and stability of phosphatidylcholine liposomes. Langmuir. 1999;15:6314–25.

    CAS  Article  Google Scholar 

  377. 377.

    Johnsson M, Bergstrand N, Edwards K, Stålgren JJ. Adsorption of a PEO-PPO-PEO triblock copolymer on small unilamellar vesicles: equilibrium and kinetic properties and correlation with membrane permeability. Langmuir. 2001;17:3902–11.

    CAS  Article  Google Scholar 

  378. 378.

    M. Silvander, Steric stabilization of liposomes—a review, in: Lipid and Polymer-Lipid Systems, Springer, 2002, pp. 35–40.

  379. 379.

    Woodle M, Newman M, Martin F. Liposome leakage and blood circulation: comparison of adsorbed block copolymers with covalent attachment of PEG. Int J Pharm. 1992;88:327–34.

    CAS  Article  Google Scholar 

  380. 380.

    Moghimi S, Porter C, Muir I, Illum L, Davis S. Non-phagocytic uptake of intravenously injected microspheres in rat spleen: influence of particle size and hydrophilic coating. Biochem Biophys Res Commun. 1991;177:861–6.

    CAS  PubMed  Article  Google Scholar 

  381. 381.

    Baekmark T, Pedersen S, Jørgensen K, Mouritsen OG. The effects of ethylene oxide containing lipopolymers and tri-block copolymers on lipid bilayers of dipalmitoylphosphatidylcholine. Biophys J. 1997;73:1479.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  382. 382.

    Illum L, Jacobsen LO, Müller R, Mak E, Davis SS. Surface characteristics and the interaction of colloidal particles with mouse peritoneal macrophages. Biomaterials. 1987;8:113–7.

    CAS  PubMed  Article  Google Scholar 

  383. 383.

    Rudt S, Müller R. In vitro phagocytosis assay of nano-and microparticles by chemiluminescence. II. Effect of surface modification by coating of particles with poloxamer on the phagocytic uptake. J Control Release. 1993;25:51–9.

    CAS  Article  Google Scholar 

  384. 384.

    Liang X, Mao G, Ng KS. Effect of chain lengths of PEO–PPO–PEO on small unilamellar liposome morphology and stability: an AFM investigation. J Colloid Interface Sci. 2005;285:360–72.

    CAS  PubMed  Article  Google Scholar 

  385. 385.

    Jamshaid M, Farr S, Kearney P, Kellaway I. Poloxamer sorption on liposomes: comparison with polystyrene latex and influence on solute efflux. Int J Pharm. 1988;48:125–31.

    CAS  Article  Google Scholar 

  386. 386.

    Moghimi S, Porter C, Illum L, Davis S. The effect of poloxamer-407 on liposome stability and targeting to bone marrow: comparison with polystyrene microspheres. Int J Pharm. 1991;68:121–6.

    CAS  Article  Google Scholar 

  387. 387.

    Castile JD, Taylor KM, Buckton G. A high sensitivity differential scanning calorimetry study of the interaction between poloxamers and dimyristoylphosphatidylcholine and dipalmitoylphosphatidylcholine liposomes. Int J Pharm. 1999;182:101–10.

    CAS  PubMed  Article  Google Scholar 

  388. 388.

    Ruíz MA, Clares B, Morales ME, Gallardo V. Vesicular lipidic systems, liposomes, PLO, and liposomes-PLO: characterization by electronic transmission microscopy. Drug Dev Ind Pharm. 2008;34:1269–76.

    PubMed  Article  CAS  Google Scholar 

  389. 389.

    Santander-Ortega M, Jódar-Reyes A, Csaba N, Bastos-González D, Ortega-Vinuesa J. Colloidal stability of Pluronic F68-coated PLGA nanoparticles: a variety of stabilisation mechanisms. J Colloid Interface Sci. 2006;302:522–9.

    CAS  PubMed  Article  Google Scholar 

  390. 390.

    Guterres SS, Alves MP, Pohlmann AR. Polymeric nanoparticles, nanospheres and nanocapsules, for cutaneous applications. Drug Target Insights. 2007;2:147.

    PubMed Central  PubMed  Google Scholar 

  391. 391.

    Mandawgade SD, Patravale VB. Development of SLNs from natural lipids: application to topical delivery of tretinoin. Int J Pharm. 2008;363:132–8.

    CAS  PubMed  Article  Google Scholar 

  392. 392.

    Contreras MF, Diéguez ARR, Soriano MJ. Rheological characterization of hydroalcoholic gels—15% ethanol—of Carbopol® Ultrez™ 10. Il Farmaco. 2001;56:437–41.

    Article  Google Scholar 

  393. 393.

    Elgindy N. Molecular entrapment of cationic drugs by carbopol-934. Can J Pharm Sci. 1976;11:32–4.

    CAS  Google Scholar 

  394. 394.

    Craig DQ, Tamburic S, Buckton G, Newton JM. An investigation into the structure and properties of carbopol 934 gels using dielectric spectroscopy and oscillatory rheometry. J Control Release. 1994;30:213–23.

    CAS  Article  Google Scholar 

  395. 395.

    Ponchel G, Touchard F, Duchêne D, Peppas NA. Bioadhesive analysis of controlled-release systems. I. Fracture and interpenetration analysis in poly (acrylic acid)-containing systems. J Control Release. 1987;5:129–41.

    CAS  Article  Google Scholar 

  396. 396.

    Lehr CM, Bouwstra JA, Tukker JJ, Junginger HE. Intestinal transit of bioadhesive microspheres in an in situ loop in the rat—a comparative study with copolymers and blends based on poly (acrylic acid). J Control Release. 1990;13:51–62.

    CAS  Article  Google Scholar 

  397. 397.

    Lueßen H, Lehr C-M, Rentel C-O, Noach A, De Boer A, Verhoef J, et al. Bioadhesive polymers for the peroral delivery of peptide drugs. J Control Release. 1994;29:329–38.

    Article  Google Scholar 

  398. 398.

    Elkheshen S. Bioadhesive matrix as controlled release dosage form for verapamil hydrochloride: effect of the types and percentages of polymers on the release profile of the drug. Pharm Ind. 1998;60:555–9.

    CAS  Google Scholar 

  399. 399.

    Machida Y, Masuda H, Fujiyama N, Ito S, Iwata M, Nagai T. Preparation and phase II clinical examination of topical dosage form for treatment of carcinoma coli containing bleomycin with hydroxypropyl cellulose. Chem Pharm Bull. 1979;27:93.

    CAS  PubMed  Article  Google Scholar 

  400. 400.

    Mortazavi SA, Smart JD. An investigation into the role of water movement and mucus gel dehydration in mucoadhesion. J Control Release. 1993;25:197–203.

    CAS  Article  Google Scholar 

  401. 401.

    Ponchel G, Touchard F, Wouessidjewe D, Duchêne D, Peppas NA. Bioadhesive analysis of controlled-release systems. III. Bioadhesive and release behavior of metronidazole-containing poly (acrylic acid)-hydroxypropyl methylcellulose systems. Int J Pharm. 1987;38:65–70.

    CAS  Article  Google Scholar 

  402. 402.

    Bedu-Addo FK, Tang P, Xu Y, Huang L. Effects of polyethyleneglycol chain length and phospholipid acyl chain composition on the interaction of polyethyleneglycol-phospholipid conjugates with phospholipid: implications in liposomal drug delivery. Pharm Res. 1996;13:710–7.

    CAS  PubMed  Article  Google Scholar 

  403. 403.

    Kenworthy AK, Hristova K, Needham D, McIntosh TJ. Range and magnitude of the steric pressure between bilayers containing phospholipids with covalently attached poly (ethylene glycol). Biophys J. 1995;68:1921.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  404. 404.

    Kenworthy AK, Simon SA, McIntosh TJ. Structure and phase behavior of lipid suspensions containing phospholipids with covalently attached poly (ethylene glycol). Biophys J. 1995;68:1903.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  405. 405.

    Ringsdorf H, Sackmann E, Simon J, Winnik FM. Interactions of liposomes and hydrophobically-modified poly-(N-isopropylacrylamides): an attempt to model the cytoskeleton. Biomembranes. 1993;1153:335–44.

    CAS  Article  Google Scholar 

  406. 406.

    Evans E, Needham D. Attraction between lipid bilayer membranes in concentrated solutions of nonadsorbing polymers: comparison of mean-field theory with measurements of adhesion energy. Macromolecules. 1988;21:1822–31.

    CAS  Article  Google Scholar 

  407. 407.

    D. Bach, Calorimetric studies of model and natural biomembranes, biomembrane structure and function, (1984) 1–41.

  408. 408.

    Casterlli F, Puglisi G, Pignatello R, Gurrieri S. Calorimetric studies of the interaction of 4-biphenylacetic acid and its β-cyclodextrin inclusion compound with lipid model membrane. Int J Pharm. 1989;52:115–21.

    Article  Google Scholar 

  409. 409.

    Castelli F, Puglisi G, Giammona G, Ventura CA. Effect of the complexation of some nonsteroidal anti-inflammatory drugs with β-cyclodextrin on the interaction with phosphatidylcholine liposomes. Int J Pharm. 1992;88:1–8.

    CAS  Article  Google Scholar 

  410. 410.

    Castelli F, Conti B, Puglisi G, Conte U, Mazzone G. Calorimetric studies on tolmetin release from poly-dl-lactide microspheres to lipid model membrane. Int J Pharm. 1994;103:217–23.

    CAS  Article  Google Scholar 

  411. 411.

    Castelli F, Conti B, Conte U, Puglisi G. Effect of molecular weight and storage times on tolmetin release from poly-D, L-lactide microspheres to lipid model membrane. A calorimetric study. J Control Release. 1996;40:277–84.

    CAS  Article  Google Scholar 

  412. 412.

    Castelli F, Pitarresi G, Tomarchio V, Giammona G. Effect of pH on the transfer kinetics of an anti-inflammatory drug from polyaspartamide hydrogels to a lipid model membrane. J Control Release. 1997;45:103–11.

    CAS  Article  Google Scholar 

  413. 413.

    Jain M. Order and dynamics in bilayers and solute in bilayers. In: Introduction to biological membranes. New York: Wiley; 1988. p. 122–65.

    Google Scholar 

  414. 414.

    Lee A. Lipid phase transitions and phase diagrams II. Mixtures involving lipids. Rev Biomembr. 1977;472:285–344.

    CAS  Google Scholar 

  415. 415.

    Sturtevant JM. A scanning calorimetric study of small molecule-lipid bilayer mixtures. Proc Natl Acad Sci. 1982;79:3963–7.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  416. 416.

    Suezaki Y, Tatara T, Kaminoh Y, Kamaya H, Ueda I. A solid-solution theory of anesthetic interaction with lipid membranes: temperature span of the main phase transition. Biomembranes. 1990;1029:143–8.

    CAS  Article  Google Scholar 

  417. 417.

    R. Fowler, E. Guggenheim, Statistical Thermodynamics (1952), in, Cambridge.

  418. 418.

    Jorgensen K, Ipsen JH, Mouritsen OG, Bennett D, Zuckermann MJ. The effects of density fluctuations on the partitioning of foreign molecules into lipid bilayers: application to anaesthetics and insecticides. Biomembranes. 1991;1067:241–53.

    CAS  Article  Google Scholar 

  419. 419.

    Castelli F, Conti B, Maccarrone D, Camera OL, Conte U. Indomethacin-dipalmitoylphosphatidylcholine interaction. A calorimetric study of drug release from poly (lactide-co-glycolide) microspheres into multilamellar vesicles. Drug Deliv. 1997;4:273–9.

    CAS  PubMed  Article  Google Scholar 

  420. 420.

    Parhi P, Mohanty C, Sahoo SK. Nanotechnology-based combinational drug delivery: an emerging approach for cancer therapy. Drug Discov Today. 2012;17:1044–52.

    CAS  PubMed  Article  Google Scholar 

  421. 421.

    Salama AK, Flaherty KT. BRAF in melanoma: current strategies and future directions. Clin Cancer Res. 2013;19:4326–34.

    CAS  PubMed  Article  Google Scholar 

  422. 422.

    Von Hoff DD, Ervin T, Arena FP, Chiorean EG, Infante J, Moore M, et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med. 2013;369:1691–703.

    Article  CAS  Google Scholar 

  423. 423.

    Wang Z, Chui W-K, Ho PC. Nanoparticulate delivery system targeted to tumor neovasculature for combined anticancer and antiangiogenesis therapy. Pharm Res. 2011;28:585–96.

    PubMed  Article  CAS  Google Scholar 

  424. 424.

    Smith I, Walsh G, Jones A, Prendiville J, Johnston S, Gusterson B, et al. High complete remission rates with primary neoadjuvant infusional chemotherapy for large early breast cancer. J Clin Oncol. 1995;13:424–9.

    CAS  PubMed  Google Scholar 

  425. 425.

    Smith I, A’Hern R, Coombes G, Howell A, Ebbs S, Hickish T, et al. A novel continuous infusional 5-fluorouracil-based chemotherapy regimen compared with conventional chemotherapy in the neo-adjuvant treatment of early breast cancer: 5 year results of the TOPIC trial. Ann Oncol. 2004;15:751–8.

    CAS  PubMed  Article  Google Scholar 

  426. 426.

    Rocca A, Peruzzotti G, Ghisini R, Viale G, Veronesi P, Luini A, et al. A randomized phase II trial comparing preoperative plus perioperative chemotherapy with preoperative chemotherapy in patients with locally advanced breast cancer. Anticancer Drugs. 2006;17:1201–9.

    CAS  PubMed  Article  Google Scholar 

  427. 427.

    De Boer R, Saini A, Johnston S, O’Brien M, Ellis P, Verrill M, et al. Continuous infusional combination chemotherapy in inflammatory breast cancer: a phase II study. Breast. 2000;9:149–55.

    PubMed  Article  Google Scholar 

  428. 428.

    Markman M, Moon J, Wilczynski S, Lopez AM, Rowland KM, Michelin DP, et al. Single agent carboplatin versus carboplatin plus pegylated liposomal doxorubicin in recurrent ovarian cancer: final survival results of a SWOG (S0200) phase 3 randomized trial. Gynecol Oncol. 2010;116:323–5.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  429. 429.

    Torrisi R, Montagna E, Scarano E, Dellapasqua S, Cancello G, Iorfida M, et al. Neoadjuvant pegylated liposomal doxorubicin in combination with cisplatin and infusional fluorouracil (CCF) with and without endocrine therapy in locally advanced primary or recurrent breast cancer. Breast. 2011;20:34–8.

    PubMed  Article  Google Scholar 

  430. 430.

    Moorthi C, Kathiresan K. Curcumin–Piperine/Curcumin–Quercetin/Curcumin–Silibinin dual drug-loaded nanoparticulate combination therapy: a novel approach to target and treat multidrug-resistant cancers. J Med Hypo Ideas. 2013;7:15–20.

    CAS  Article  Google Scholar 

  431. 431.

    Shen JM, Gao FY, Yin T, Zhang HX, Ma M, Yang YJ, et al. cRGD-functionalized polymeric magnetic nanoparticles as a dual-drug delivery system for safe targeted cancer therapy. Pharmacol Res. 2013;70:102–15.

    CAS  PubMed  Article  Google Scholar 

  432. 432.

    Robert C, Thomas L, Bondarenko I, O’Day S, Weber J, Garbe C, et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med. 2011;364:2517–26.

    CAS  PubMed  Article  Google Scholar 

  433. 433.

    Peng CL, Lai PS, Lin FH, Wu SYH, Shieh MJ. Dual chemotherapy and photodynamic therapy in an HT-29 human colon cancer xenograft model using SN-38-loaded chlorin-core star block copolymer micelles. Biomaterials. 2009;30:3614–25.

    CAS  PubMed  Article  Google Scholar 

  434. 434.

    Dalton CH, Hattersley IJ, Rutter SJ, Chilcott RP. Absorption of the nerve agent VX (O-ethyl-S-[2 (di-isopropylamino) ethyl] methyl phosphonothioate) through pig, human and guinea pig skin in vitro. Toxicol in Vitro. 2006;20:1532–6.

    CAS  PubMed  Article  Google Scholar 

  435. 435.

    Dorandeu F, Mikler J, Thiermann H, Tenn C, Davidson C, Sawyer T, et al. Swine models in the design of more effective medical countermeasures against organophosphorus poisoning. Toxicology. 2007;233:128–44.

    CAS  PubMed  Article  Google Scholar 

  436. 436.

    Chilcott R, Dalton C, Hill I, Davison C, Blohm K, Clarkson E, et al. In vivo skin absorption and distribution of the nerve agent VX (O–ethyl–S–[2 (diisopropylamino) ethyl] methylphosphonothioate) in the domestic white pig. Hum Exp Toxicol. 2005;24:347–52.

    CAS  PubMed  Article  Google Scholar 

  437. 437.

    Bronaugh RL, Stewart RF, Congdon ER. Methods for in vitro percutaneous absorption studies II. Animal models for human skin. Toxicol Appl Pharmacol. 1982;62:481–8.

    CAS  PubMed  Article  Google Scholar 

  438. 438.

    Bronaugh RL, Stewart RF. Methods for in vitro percutaneous absorption studies IV: the flow‐through diffusion cell. J Pharm Sci. 1985;74:64–7.

    CAS  PubMed  Article  Google Scholar 

  439. 439.

    Sato K, Sugibayashi K, Morimoto Y. Species differences in percutaneous absorption of nicorandil. J Pharm Sci. 1991;80:104–7.

    CAS  PubMed  Article  Google Scholar 

  440. 440.

    Panchagnula R, Stemmer K, Ritschel W. Animal models for transdermal drug delivery. Methods Find Exp Clin Pharmacol. 1997;19:335–41.

    CAS  PubMed  Google Scholar 

  441. 441.

    Schmook FP, Meingassner JG, Billich A. Comparison of human skin or epidermis models with human and animal skin in in-vitro percutaneous absorption. Int J Pharm. 2001;215:51–6.

    CAS  PubMed  Article  Google Scholar 

  442. 442.

    Vallet V, Cruz C, Licausi J, Bazire A, Lallement G, Boudry I. Percutaneous penetration and distribution of VX using in vitro pig or human excised skin: validation of demeton-S-methyl as adequate simulant for VX skin permeation investigations. Toxicology. 2008;246:73–82.

    CAS  PubMed  Article  Google Scholar 

  443. 443.

    Walker M, Dugard P, Scott R. Invitro percutaneous-absorption studies-A comparison of human and laboratory species. In: Human toxicology. Basingstoke: Stockton Press Ltd Brunel rd houndmills; 1983. p. 561–2. rg21 2xs.

    Google Scholar 

  444. 444.

    Vecchia BE, Bunge A. Animal models: a comparison of permeability coefficients for excised skin from humans and animals. In: Riviere JE, editor. The Dermal Absorption Models in Toxicology and Pharmacology. Boca Raton: CRC Press; 2006. p. 305–33.

    Google Scholar 

  445. 445.

    Dick IP, SCOTT RC. Pig ear skin as an in vitro model for human skin permeability. J Pharm Pharmacol. 1992;44:640–5.

    CAS  PubMed  Article  Google Scholar 

  446. 446.

    Lin SY, Hou S, Hsu T, Yeh F. Comparisons of different animal skins with human skin in drug percutaneous penetration studies. Methods Find Exp Clin Pharmacol. 1992;14:645–54.

    CAS  PubMed  Google Scholar 

  447. 447.

    Jacobi U, Kaiser M, Toll R, Mangelsdorf S, Audring H, Otberg N, et al. Porcine ear skin: an in vitro model for human skin. Skin Res Technol. 2007;13:19–24.

    PubMed  Article  Google Scholar 

  448. 448.

    Meyer W. The skin of domestic mammals as a model for the human skin, with special reference to the domestic pig. Curr Probl Dermatol. 1978;7:39–52.

    CAS  PubMed  Article  Google Scholar 

  449. 449.

    Calabrese EJ. Gastrointestinal and dermal absorption: interspecies differences. Drug Metab Rev. 1984;15:1013–32.

    CAS  PubMed  Article  Google Scholar 

  450. 450.

    Monteiro-Riviere NA, Riviere JE. The pig as a model for cutaneous pharmacology and toxicology research. In: Tumbleson ME, Shook LB, editors. Advances in swine in biomedical research. New York: Plenum Press; 1996. p. 425–58.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vandana Gupta.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gupta, V., Trivedi, P. Dermal Drug Delivery for Cutaneous Malignancies: Literature at a Glance. J Pharm Innov 11, 1–33 (2016). https://doi.org/10.1007/s12247-015-9236-3

Download citation

Keywords

  • Skin cancer
  • Non melanoma skin cancer
  • Treatment modalities
  • Topical delivery
  • Novel drug delivery system
  • Dual therapy