Skip to main content
Log in

Modeling, Optimization, and In Vitro Corneal Permeation of Chitosan-Lomefloxacin HCl Nanosuspension Intended for Ophthalmic Delivery

  • Research Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Lomefloxacin HCl (LF) is a widely used fourth-generation fluoroquinolone antibiotic. Like most drug solutions administered via ocular route, it is usually eliminated by eye protective mechanisms. Chitosan (CS) is a natural polysaccharide polymer with numerous advantages in ocular delivery with, antibacterial, and antifungal properties. The aims were to formulate and optimize LF nanosuspensions (NS) with enhanced antimicrobial activity and prolonged duration using ionic gelation technique. Formulation variables included drug load, CS concentration, crosslinker type (tripolyphosphate and sodium alginate), and concentration. Nanosuspension properties (particle size, zeta potential, polydispersity index, entrapment efficiency, drug release, and permeation through bovine cornea) were evaluated. The artificial neural networks (ANNs) model showed optimum entrapment efficiency of 70.63 % w/w, particle size of 176 ± 0.28 nm, and zeta potential of 13.65 mV. Transmission electron microscopy illustrated the production of well-defined spherical nanoparticles. The nanosuspensions showed prolonged release of LF for more than 8 h and threefold increase in amount permeated through bovine cornea compared to drug solution. Improved antibacterial activity of the nanosuspension was noted where 2- and 3.5-fold decrease in minimum inhibitory concentration (MIC) of drug against Gram-positive and Gram-negative bacteria were observed, respectively. Twofold decrease in minimum bactericidal concentration (MBC) of drug nanosuspension against both types of bacteria was also demonstrated. Histopathological examination showed compatibility of optimized formulation with eye tissues in rabbit model. Therefore, model-optimized LF nanosuspension could be an ideal solution to ocular infections by virtue of their augmented activity, high compatibility, and improved permeability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sultana N, Arayne MS, Furqan H. In vitro availability of lomefloxacin hydrochloride in presence of essential and trace elements. Pak J Pharm Sci. 2005;18:59–65.

    CAS  PubMed  Google Scholar 

  2. Volpe DA. Permeability classification of representative fluoroquinolones by a cell culture method. AAPS Pharm Sci. 2004;6:1–6.

    Article  Google Scholar 

  3. Klosinska-Szmurlo E, Grudzien M, Betlejewska-Kielak K, Plucinski FA, Biernacka J, Mazurek AP. Physico-chemical properties of lomefloxacin, levofloxacin and moxifloxacin relevant to Biopharmaceutics Classification System. Acta Chim Slov. 2014;61:827–34.

    CAS  PubMed  Google Scholar 

  4. Sun J, Sakai S, Tauchi Y, Deguchi Y, Chen J, Zhang R, et al. Determination of lipophilicity of two quinolone antibacterials, ciprofloxacin and grepafloxacin, in the protonation equilibrium. Eur J Pharm Biopharm. 2002;54:51–8.

    Article  CAS  PubMed  Google Scholar 

  5. Volgyi G, Vizseralek G, Takacs-Novak K, Avdeef A, Tam KY. Predicting the exposure and antibacterial activity of fluoroquinolones based on physicochemical properties. Eur J Pharm Sci. 2012;47:21–7.

    Article  CAS  PubMed  Google Scholar 

  6. Mishra GP, Bagui M, Tamboli V, Mitra AK. Recent applications of liposomes in ophthalmic drug delivery. J Drug Deliv. 2011;2011:1–14.

    Article  Google Scholar 

  7. Bucolo C, Maltese A, Drago F, eds. When nanotechnology meets the ocular surface. 2008;325–32.

  8. Raju HB, Goldberg JL, eds. Nanotechnology for ocular therapeutics and tissue repair. 2008;431–6.

  9. Badawi AA, El-Laithy HM, El Qidra RK, El Mofty H. Chitosan based nanocarriers for indomethacin ocular delivery. Arch Pharm Res. 2008;31:1040–9.

    Article  CAS  PubMed  Google Scholar 

  10. de la Fuente M, Ravia M, Paolicelli P, Sanchez A, Seijo BA, Alonso MJ. Chitosan-based nanostructures: a delivery platform for ocular therapeutics. Adv Drug Deliv Rev. 2010;62:100–17.

    Article  PubMed  Google Scholar 

  11. Kayser O, Lemke A, Hernandez-Trejo N. The impact of nanobiotechnology on the development of new drug delivery systems. Curr Pharm Biotechnol. 2005;6:3–5.

    CAS  PubMed  Google Scholar 

  12. Mainardes RM, Urban MC, Cinto PO, Khalil NM, Chaud MV, Evangelista RC, et al. Colloidal carriers for ophthalmic drug delivery. Curr Drug Targets. 2005;6:363–71.

    Article  CAS  PubMed  Google Scholar 

  13. Ali M, Byrne ME. Challenges and solutions in topical ocular drug-delivery systems. Periodical. Challenges and solutions in topical ocular drug-delivery systems. 2008;1:145–61.

  14. Pignatello R, Puglisi G. Nanotechnology in ophthalmic drug delivery: a survey of recent developments and patenting activity. Recent Pat Nanomedicine. 2011;1:42–54.

    Article  CAS  Google Scholar 

  15. Del Amo EM, Urtti A. Current and future ophthalmic drug delivery systems: a shift to the posterior segment. Drug Discov Today. 2008;13:135–43.

    Article  PubMed  Google Scholar 

  16. Durairaj C, Kadam RS, Chandler JW, Hutcherson SL, Kompella UB. Nanosized dendritic polyguanidilyated translocators for enhanced solubility, permeability, and delivery of gatifloxacin. Invest Ophthalmol Vis Sci. 2010;51:5804–16.

    Article  PubMed  Google Scholar 

  17. Alonso MJ, Sanchez A. The potential of chitosan in ocular drug delivery. J Pharm Pharmacol. 2003;55:1451–63.

    Article  CAS  PubMed  Google Scholar 

  18. Van der Merwe S, Verhoef J, Verheijden J, Kotze A, Junginger H. Trimethylated chitosan as polymeric absorption enhancer for improved peroral delivery of peptide drugs. Eur J Pharm Biopharm. 2004;58:225–35.

    Article  PubMed  Google Scholar 

  19. Di Colo G, Zambito Y, Burgalassi S, Nardini I, Saettone M. Effect of chitosan and of N-carboxymethylchitosan on intraocular penetration of topically applied ofloxacin. Int J Pharm. 2004;273:37–44.

    Article  PubMed  Google Scholar 

  20. Ahuja M, Verma P, Bhatia M. Preparation and evaluation of chitosan-itraconazole co-precipitated nanosuspension for ocular delivery. J Exp Nanosci. 2012;222:1–13.

    Google Scholar 

  21. Qi L, Xu Z, Jiang X, Hu C, Zou X. Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr Res. 2004;339:2693–700.

    Article  CAS  PubMed  Google Scholar 

  22. Ali HS, Blagden N, York P, Amani A, Brook T. Artificial neural networks modelling the prednisolone nanoprecipitation in microfluidic reactors. Eur J Pharm Sci. 2009;37:514–22.

    Article  CAS  PubMed  Google Scholar 

  23. Esmaeilzadeh-Gharedaghi E, Faramarzi MA, Amini MA, Rouholamini Najafabadi A, Rezayat SM, Amani A. Effects of processing parameters on particle size of ultrasound prepared chitosan nanoparticles: an artificial neural networks study. Pharm Dev Technol. 2012;17:638–47.

    Article  CAS  PubMed  Google Scholar 

  24. Amini MA, Faramarzi MA, Mohammadyani D, Esmaeilzadeh-Gharehdaghi E, Amani A. Modeling the parameters involved in preparation of PLA nanoparticles carrying hydrophobic drug molecules using artificial neural networks. J Pharm Innov. 2013;8:111–20.

    Article  Google Scholar 

  25. Motwani SK, Chopra S, Talegaonkar S, Kohli K, Ahmad FJ, Khar RK. Chitosan-sodium alginate nanoparticles as submicroscopic reservoirs for ocular delivery: formulation, optimisation and in vitro characterisation. Eur J Pharm Biopharm. 2008;68:513–25.

    CAS  PubMed  Google Scholar 

  26. Misra R, Acharya S, Dilnawaz F, Sahoo SK. Sustained antibacterial activity of doxycycline-loaded poly (D, L-lactide-co-glycolide) and poly (ε-caprolactone) nanoparticles. Nanomedicine. 2009;4:519–30.

    Article  CAS  PubMed  Google Scholar 

  27. Wu Y, Yang W, Wang C, Hu J, Fu S. Chitosan nanoparticles as a novel delivery system for ammonium glycyrrhizinate. Int J Pharm. 2005;295:235–45.

    Article  CAS  PubMed  Google Scholar 

  28. Liu H, Gao C. Preparation and properties of ionically cross-linked chitosan nanoparticles. Polym Adv Technol. 2009;20:613–9.

    Article  CAS  Google Scholar 

  29. Abdelkader H, Ismail S, Kamal A, Alany RG. Design and evaluation of controlled release niosomes and discomes for naltrexone hydrochloride ocular delivery. J Pharm Sci. 2011;100:1833–46.

    Article  CAS  PubMed  Google Scholar 

  30. Gupta AK, Madan S, Majumdar D, Maitra A. Ketorolac entrapped in polymeric micelles: preparation, characterisation and ocular anti-inflammatory studies. Int J Pharm. 2000;209:1–14.

    Article  CAS  PubMed  Google Scholar 

  31. Mitragotri S, Anissimov YG, Bunge AL, Frasch HF, Guy RH, Hadgraft J, Kasting GB, Lane ME, Roberts MS. Mathematical models of skin permeability: an overview. Int J Pharm. 418: 115–29.

  32. Gupta H, Aqil M, Khar R, Ali A, Bhatnagar A, Mittal G. Biodegradable levofloxacin nanoparticles for sustained ocular drug delivery. J Drug Target. 2011;19:409–17.

    Article  CAS  PubMed  Google Scholar 

  33. Luo Q, Zhao J, Zhang X, Pan W. Nanostructured lipid carrier (NLC) coated with chitosan oligosaccharides and its potential use in ocular drug delivery system. Int J Pharm. 2011;403:185–91.

    Article  CAS  PubMed  Google Scholar 

  34. Viertler C, Groelz D, Gündisch S, Kashofer K, Reischauer B, Riegman PHJ, et al. A new technology for stabilization of biomolecules in tissues for combined histological and molecular analyses. J Mol Diagn. 2012;14:458–66.

    Article  CAS  PubMed  Google Scholar 

  35. Colbourn E, Roskilly S, Rowe R, York P. Modelling formulations using gene expression programming—a comparative analysis with artificial neural networks. Eur J Pharm Sci. 2011;44:366–74.

    Article  CAS  PubMed  Google Scholar 

  36. Shao Q, Rowe RC, York P. Comparison of neurofuzzy logic and neural networks in modelling experimental data of an immediate release tablet formulation. Eur J Pharm Sci. 2006;28:394–404.

    Article  CAS  PubMed  Google Scholar 

  37. Ali AMA, Abdelrahim MEA. Modeling and optimization of terbutaline emitted from a dry powder inhaler and influence on systemic bioavailability using data mining technology. J Pharm Innov. 2014;9:38–47.

    Article  Google Scholar 

  38. Kahlmeter G, Brown DF, Goldstein FW, MacGowan AP, Mouton JW, Ӧsterlund A, et al. European harmonization of MIC breakpoints for antimicrobial susceptibility testing of bacteria. J Antimicrob Chemother. 2003;52:145–8.

    Article  CAS  PubMed  Google Scholar 

  39. Ahmed SH, Amin MA, Saafan AE, El-Gendy AO, ul Islam M. Measuring susceptibility of Candida albicans biofilms towards antifungal agents. Der Pharm Lett. 2013;5:376–83.

    CAS  Google Scholar 

  40. Rajan M, Raj V. Encapsulation, characterisation and in-vitro release of anti-tuberculosis drug using chitosan-poly ethylene glycol nanoparticles. Int J Pharm Sci. 2012;4:255–9.

    CAS  Google Scholar 

  41. Gan Q, Wang T. Chitosan nanoparticle as protein delivery carrier: systematic examination of fabrication conditions for efficient loading and release. Colloids Surf B. 2007;59:24–34.

    Article  CAS  Google Scholar 

  42. Boonsongrit Y, Mitrevej A, Mueller BW. Chitosan drug binding by ionic interaction. Eur J Pharm Biopharm. 2006;62:267–74.

    Article  CAS  PubMed  Google Scholar 

  43. Kumar D, Jain N, Gulati N, Nagaich U. Nanoparticles laden in situ gelling system for ocular drug targeting. J Adv Pharm Technol Res. 2013;4:9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Agnihotri SA, Mallikarjuna NN, Aminabhavi TM. Recent advances on chitosan-based micro-and nanoparticles in drug delivery. J Control Release. 2004;100:5–28.

    Article  CAS  PubMed  Google Scholar 

  45. Zhang J, Chen XG, Li YY, Liu CS. Self-assembled nanoparticles based on hydrophobically modified chitosan as carriers for doxorubicin. Nanomed Nanotechnol. 2007;3:258–65.

    Article  CAS  Google Scholar 

  46. Xu Y, Du Y. Effect of molecular structure of chitosan on protein delivery properties of chitosan nanoparticles. Int J Pharm. 2003;250:215–26.

    Article  CAS  PubMed  Google Scholar 

  47. Katas H, Alpar HO. Development and characterisation of chitosan nanoparticles for siRNA delivery. J Control Release. 2006;115:216–25.

    Article  CAS  PubMed  Google Scholar 

  48. Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release. 2001;70:1–20.

    Article  CAS  PubMed  Google Scholar 

  49. Majumdar S, Hippalgaonkar K, Repka MA. Effect of chitosan, benzalkonium chloride and ethylenediaminetetraacetic acid on permeation of acyclovir across isolated rabbit cornea. Int J Pharm. 2008;348:175–8.

    Article  CAS  PubMed  Google Scholar 

  50. De Campos AM, Sanchez A, Alonso MJ. Chitosan nanoparticles: a new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to cyclosporin A. Int J Pharm. 2001;224:159–68.

    Article  PubMed  Google Scholar 

  51. Vega E, Gamisans F, Garcia M, Chauvet A, Lacoulonche F, Egea M. PLGA nanospheres for the ocular delivery of flurbiprofen: drug release and interactions. J Pharm Sci. 2008;97:5306–17.

    Article  CAS  PubMed  Google Scholar 

  52. Benhabiles M, Salah R, Lounici H, Drouiche N, Goosen M, Mameri N. Antibacterial activity of chitin, chitosan and its oligomers prepared from shrimp shell waste. Food Hydrocoll. 2012;29:48–56.

    Article  CAS  Google Scholar 

  53. Martinez LR, Mihu MR, Han G, Frases S, Cordero RJ, Casadevall A, et al. The use of chitosan to damage Cryptococcus neoformans biofilms. Biomaterials. 2010;31:669–79.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Fernandes P, Sousa I, Cunha-Silva L, Ferreira M, de Castro B, Feio MJ, et al. Synthesis, characterization and antibacterial studies of a copper (II) levofloxacin ternary complex. J Inorg Biochem. 2014;110:64–71.

    Google Scholar 

  55. Sadeek SA, El-Shwiniy WH, El-Attar MS, Zordok WA. Spectroscopic, structural and antibacterial evaluation of some lomefloxacin metal complexes. Int J Adv Res. 2014;2:158–208.

    CAS  Google Scholar 

  56. Singh J, Dutta PK. Preparation, antibacterial and physicochemical behavior of chitosan/ofloxacin complexes. Int J Polym Mater Polym Biomater. 2010;59:793–807.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

A special acknowledgment is directed to the engineer, Mr. Stephen Roskily, previously working for Intelligensys Ltd., UK, for his help in using of the software (INForm). The authors also want to acknowledge the help given by Dr. Ahmed Osama El-Gendi at Beni-Suef University for help given during the microbiological study.

Ethical Standards

All experiments done in this research on animals were performed according to the laws adopted by the ethical research committee of Beni-Suef University, Egypt.

Conflict of Interest

The authors of this work declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Mahmoud Abdelhaleem Ali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelrahman, A.A., Salem, H.F., Khallaf, R.A. et al. Modeling, Optimization, and In Vitro Corneal Permeation of Chitosan-Lomefloxacin HCl Nanosuspension Intended for Ophthalmic Delivery. J Pharm Innov 10, 254–268 (2015). https://doi.org/10.1007/s12247-015-9224-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-015-9224-7

Keywords

Navigation