Barrasso D, Ramachandran R. A comparison of model order reduction techniques for a four-dimensional population balance model describing multi-component wet granulation processes. Chem Eng Sci. 2012;80:380–92.
CAS
Article
Google Scholar
Barrasso D, Walia S, Ramachandran R. Multi-component population balance modeling of continuous granulation processes: a parametric study and comparison with experimental trends. Powder Technol. 2013;241:85–97.
CAS
Article
Google Scholar
Boukouvala F, Chaudhury A, Sen M, Zhou R, Mioduszewski L, Ierapetritou M, Ramachandran R. Computer-aided flowsheet simulation of a continuous tablet manufacturing process incorporating wet granulation. J Pharm Innov. 2013;8(1):11–27.
Article
Google Scholar
Braumann A, Kraft M, Wagner W. Numerical study of a stochastic particle algorithm solving a multidimensional population balance model for high shear granulation. J Comput Phys. 2010;229:7672–91.
CAS
Article
Google Scholar
Chaudhury A, Kapadia A, Prakash AV, Barrasso D, Ramachandran R. An extended cell-average technique for a multi-dimensional population balance of granulation describing aggregation and breakage. Adv Powder Technol. 2013a;24(6):962–71.
Article
Google Scholar
Chaudhury A, Niziolek A, Ramachandran R. Multi-dimensional mechanistic modeling of fluid bed granulation processes: an integrated approach. Adv Powder Technol. 2013b;24(1):113–31.
Article
Google Scholar
Chaudhury A, Ramachandran R. Integrated population balance model development and validation of a granulation process. Part Sci Technol. 2013;31(4):407–18.
CAS
Article
Google Scholar
Chaudhury A, Wu H, Khan M, Ramachandran R. A mechanistic population balance model for granulation processes: effect of process and formulation parameters. Chem Eng Sci. 2014;107:76–92.
CAS
Article
Google Scholar
Christofides PD. Control of nonlinear distributed process systems: recent developments and challenges. AIChE J. 2001;47(3):514–8.
CAS
Article
Google Scholar
FDA. 2004. Guidance for industry. pat-a framework for innovative pharmaceutical development, manufacturing, and quality assurance. http://www.fda.giv/cder/guidance/6419fnl.pdf. accessed on 30 May 2013.
Gantt JA, Gatzke EP. A stochastic technique for multidimensional granulation modeling. AIChE J. 2006;52(9):3067–77.
CAS
Article
Google Scholar
Gernaey KV, Gani R. A model-based systems approach to pharmaceutical product-process design and analysis. Chem Eng Sci. 2010;65(21):5757–69.
CAS
Article
Google Scholar
Giry K, Genty M, Viana M, Wuthrich P, Chulia D. Multiphase versus single pot granulation process: influence of process and granulation parameters on granules properties. Drug Dev Ind Pharm. 2006;32(5):509–30.
CAS
PubMed
Article
Google Scholar
Hapgood KP, Litster JD, Smith R. Nucleation regime map for liquid bound granules. AIChE J. 2003;49(2):350–61.
CAS
Article
Google Scholar
Immanuel CD, Doyle FJ III. Computationally efficient solution of population balance models incorporating nucleation, growth and coagulation: application to emulsion polymerization. Chem Eng Sci. 2003;58(16):3681–98.
CAS
Article
Google Scholar
Immanuel CD, Doyle FJ III. Solution technique for a multi-dimensional population balance model describing granulation processes. Powder Technol. 2005;156(2–3):213–25.
CAS
Article
Google Scholar
Iveson S, Litster J. Fundamental studies of granule consolidation part 2: quantifying the effects of particle and binder properties. Powder Technol. 1998a;99(3):243–50.
CAS
Article
Google Scholar
Iveson SM, Litster JD. Growth regime map for liquid-bound granules. AIChE J. 1998b;44(7):1510–18.
CAS
Article
Google Scholar
Iveson SM, Litster JD, Hapgood K, Ennis BJ. Nucleation, growth and breakage phenomena in agitated wet granulation processes: a review. Powder Technol. 2001;117(1–2):3–39.
CAS
Article
Google Scholar
Kayrak-Talay D, Litster JD. A priori performance prediction in pharmaceutical wet granulation: testing the applicability of the nucleation regime map to a formulation with a broad size distribution and dry binder addition. Int J Pharm. 2011;418(2):254–64.
CAS
PubMed
Article
Google Scholar
Kennedy J, Eberhart R. Particle swarm optimization. In: Proceedings of the IEEE international conference on neural networks, 1995. Proceedings. vol 4. 1995 p. 1942–1948.
Klatt KU, Marquardt W. Perspectives of process systems engineering-personal views from academia and industry. Comput Chem Eng. 2009;33:536–50.
CAS
Article
Google Scholar
Knight P, Instone T, Pearson JM, Hounslow M. An investigation into the kinetics of granulation using a high shear mixer. Powder Technol. 1993;77:159–69.
CAS
Article
Google Scholar
Kristensen HG. Particle agglomeration in high shear mixers. Powder Technol. 1996;88(3):197–202.
CAS
Article
Google Scholar
Li L, Yu X, Li X, Guo W. 2009. A modified pso algorithm for constrained multi-objective optimization. In: Third international conference on network and system security, 2009. NSS ’09. p. 462–467.
Linninger AA, Chowdhry S, Bahl V, Krendl H, Pinger H. A systems approach to mathematical modeling of industrial processes. Comput Chem Eng. 2000;24:591–8.
CAS
Article
Google Scholar
Madec L, Falk L, Plasari E. Modelling of the agglomeration in suspension process with multidimensional kernels. Powder Technol. 2003;130(1–3):147–53.
CAS
Article
Google Scholar
Pandey P, Tao J, Chaudhury A, Ramachandran R, Gao JZ, Bindra DS. A combined experimental and modeling approach to study the effects of high-shear wet granulation process parameters on granule characteristics. Pharm Dev Technol. 2013;18(1):210–24.
CAS
PubMed
Article
Google Scholar
Pandey P, Tao J, Gao JZ, Bindra D, Narang A, Ramachandran R, Chaudhury A. 2011. A combined experimental and computational approach to the scale-up of high-shear wet granulation. In: Proc. 2011 AIChE annual meeting (Minneapolis, USA, October 2011).
Ramachandran R, Barton PI. Effective parameter estimation within a multi-dimensional population balance model framework. Chem Eng Sci. 2010;65(16):4884–93.
CAS
Article
Google Scholar
Ramachandran R, Poon JMH, Sanders CFW, Glaser T, Immanuel CD, Doyle FJ III, Litster JD, Stepanek F, Wang FY, Cameron IT. Experimental studies on distributions on granule size, binder content and porosity in batch drum granulation: inferences on process modelling requirements and process sensitivities. Powder Technol. 2008;188:89–101.
CAS
Article
Google Scholar
Salman AD, Hounslow MJ, Seville JPK. Granulation. Oxford: Elsevier; 2007.
Google Scholar
Shi Y, Eberhart R. A modified particle swarm optimizer. In: Evolutionary computation proceedings, 1998. IEEE world congress on computational intelligence. (1998) p. 69–73.
Soos M, Sefcik J, Morbidelli M. Investigation of aggregation, breakage and restructuring kinetics of colloidal dispersions in turbulent flows by population balance modeling and static light scattering. Chem Eng Sci. 2006;61(8):2349–63.
CAS
Article
Google Scholar
Stepanek F, Rajniak P. Droplet morphologies on particles with macroscopic surface roughness. Langmuir. 2006;22(3):917–23.
CAS
PubMed
Article
Google Scholar
Verkoeijen D, Pouw GA, Meesters GMH, Scarlett B. Population balances for particulate processes—a volume approach. Chem Eng Sci. 2002;57(12):2287–303.
CAS
Article
Google Scholar
žižek K, Hraste M, Gomzi Z. High shear granulation of dolomite—I: effect of shear regime on process kinetics. Chem Eng Res Des. 2013;91(1):70–86.
Article
Google Scholar