Model-Based Control-Loop Performance of a Continuous Direct Compaction Process

Abstract

This study is concerned with enhanced model-based control of a continuous direct compression pharmaceutical process. The control-loop performance is assessed in silico and results obtained will be incorporated into the pilot plant facility of the continuous direct compaction process at the NSF Engineering Research Center of Rutgers University. The models used in the study are obtained via system identification from a combination of first principles-based dynamic models, experimental data, and/or literature data. The main objective of the paper is to formulate an effective control strategy at the basic/regulatory level, for the integrated continuous operation of the direct compaction process, and to maintain the process at the desired set-points, taking into account the multivariable process interactions and disturbances. Simulations show that that at very mild interactions, the proposed regulatory control strategy is able to maintain set-points at desired values. However, at moderate to high process interactions, oscillatory behavior of controlled variables is seen. The presence of disturbances also resulted in poor control-loop performance. Results also lend credence to the development of advanced control strategies in such scenarios and will be addressed in future work. Optimal control tuning parameters are obtained from a derivative-free optimization algorithm.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Gorsek A, Glavic P. Design of batch versus continuous processes: Part 1: single-purpose equipment. Chem Eng Res Des. 1997;75:709–17.

    Article  CAS  Google Scholar 

  2. 2.

    Leuenberger H. New trends in the production of pharmaceutical granules: batch versus continuous processing. Eur J Pharm Biopharm. 2001;52:289–98.

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Plumb K. Continous processing in the pharmaceutical industry: changing the mindset. Chem Eng Res Des. 2005;83:730–8.

    Article  CAS  Google Scholar 

  4. 4.

    Leuenberger H, Betz G. Granulation process control—production of pharmaceutical granules: the classical batch concept and the problem of scale-up. Granulation. 2007;98:705–33.

    Article  Google Scholar 

  5. 5.

    Leuenberger H. Scale-up in the 4th dimension in the field of granulation and drying or how to avoid classical scale-up. Powder Technol. 2003;130:225–30.

    Article  CAS  Google Scholar 

  6. 6.

    Werani J, Grunberg M, Ober C, Leuenberger H. Semicontinuous granulation—the process of choice for the production of pharmaceutical granules. Powder Technol. 2004;140:163–8.

    Article  CAS  Google Scholar 

  7. 7.

    Betz G, Junker-Purgin P, Leuenberger H. Batch and continuous procesing in the production of pharmaceutical granules. Pharm Dev Technol. 2003;8:289–97.

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Gernaey KV, Gani R. A model-based systems approach to pharmaceutical product-process design and analysis. Chemical Engineering Science. 2010;65:5757–69.

    Google Scholar 

  9. 9.

    Reklaitis GV, Khinast J, Muzzio FJ. Pharmaceutical engineering science—new approaches to pharmaceutical development and manufacturing. Chem Eng Sci. 2010;65:iv–vii.

    Article  Google Scholar 

  10. 10.

    Klatt KU, Marquardt W. Perspectives of process systems engineering—personal views from academia and industry. Comp Chem Eng. 2009;33:536–50.

    Article  CAS  Google Scholar 

  11. 11.

    Huang J, Kaul G, Cai C, Chatlapalli R, Hernandez-Abad P, Ghosh K, Nagi A. Quality by design case study: an integrated multi-variate approach to drug product and process development. Int J Pharm. 2009;382(1–2):23–32.

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Mckenzie P, Kiang S, Tom J, Rubin E, Futran M. Can pharmaceutical process development become high tech? AIChE J. 2006;52(12):3990–4.

    Article  CAS  Google Scholar 

  13. 13.

    Hamad ML, Bowman K, Smith N, Sheng X, Morris KR. Multi-scale pharmaceutical process understanding: from particle to powder dosage form. Chem Eng Sci. 2010;65:5625–38.

    Article  CAS  Google Scholar 

  14. 14.

    Wang XZ, Liu L, Li R, Tweedie RJ, Primrose K, Corbett J, McNeil-Watson F. Online monitoring of nanoparticle suspensions using dynamic light scattering, ultrasound spectroscopy and process tomagraphy. Comp Aided Chem Eng. 2009;26:351–6.

    Article  Google Scholar 

  15. 15.

    Lee M-J, Seo D-Y, Lee HE, Wang IC, Kim WS, Jeong MY, Choi GJ. In line NIR quantification of film thickness on pharmaceutical pellets during a fluid bed coating process. Int J Pharm. 2010;403:66–72.

    PubMed  Article  Google Scholar 

  16. 16.

    Chen ZP, Lovett D, Morris J. Process analytical technologies (PAT)—the impact for process systems engineering. Comp Aided Chem Eng. 2008;25:967–72.

    Article  Google Scholar 

  17. 17.

    Ramachandran R, Rangaiah GP, Lakshminrayanan S. Data analysis, modeling and control performance enhancement of an industrial fluid catalytic cracking unit. Chem Eng Sci. 2007;62:1958–73.

    Article  CAS  Google Scholar 

  18. 18.

    Heinrich S, Peglow M, Morl L. Unsteady and steady-state particle size distributions in batch and continuous fluidized bed granulation systems. Chem Eng J. 2002;86:223–31.

    Article  CAS  Google Scholar 

  19. 19.

    Heinrich S, Peglow M, Ihlow M, Morl L. Particle population modeling in fluidized bed-spray granulation—analysis of the steady state and unsteady behaviour. Powder Technol. 2003;130:154–61.

    Article  CAS  Google Scholar 

  20. 20.

    Wang FY, Ge XY, Balliu N, Cameron IT. Optimal control and operation of drum granulation processes. Chem Eng Sci. 2006;61:257–67.

    Article  CAS  Google Scholar 

  21. 21.

    Wang FY, Cameron IT. A multi-form modelling approach to the dynamics and control of drum granulation processes. Powder Technol. 2007;179:2–11.

    Article  CAS  Google Scholar 

  22. 22.

    Glaser T, Sanders CFW, Wang FY, Cameron IT, Ramachandran R, Litster JD, Poon JMH, Immanuel CD, Doyle III FJ. Model predictive control of drum granulation. J Process Contr. 2009;19(4):615–22.

    Article  CAS  Google Scholar 

  23. 23.

    Hsu SH, Reklaitis GV, Venkatasubramanian V. Modeling and control of roller compaction for pharmaceutical manufacturing. part I: Process dynamics and control framework. J Pharam Innov. 2010;5:14–23.

    Article  Google Scholar 

  24. 24.

    Hsu SH, Reklaitis GV, Venkatasubramanian V. Modeling and control of roller compaction for pharmaceutical manufacturing. Part II: Control system design. J Pharam Innov. 2010;5:24–36.

    Article  Google Scholar 

  25. 25.

    Christofides PD. Model-based control of particulate processes. Heidelberg: Springer; 2008.

    Google Scholar 

  26. 26.

    Christofides PD. Control of nonlinear distributed process systems: recent development and challenges. AICHE J. 2001;47:514–8.

    Article  CAS  Google Scholar 

  27. 27.

    Christofides PD. Control of nonlinear distributed parameter systems: an overview and new research directions. AICHE J. 2002;54:341–6.

    Google Scholar 

  28. 28.

    Ward JD, Yu C-C, Doherty MF. Plantwide dynamics and control of processes with crystallization. Comp Chem Eng. 2010;34:781–91.

    Article  Google Scholar 

  29. 29.

    Patience DB, Rawlings JB. Particle-shape monitoring and control of crystallization processes. AIChE J. 2001;47:2125–30.

    Article  CAS  Google Scholar 

  30. 30.

    M. Ashobi. Modeling and control of a continuous crystallization process using neural networks and model predictive control. PhD thesis, University of Saskatchewan, 1995.

  31. 31.

    Paengjuntuek W, Kittisupakorn P, Arpornwichanop A. Optimization and nonlinear control of a batch crystallization process. J Chin Inst Chem Eng. 2008;39:249–56.

    Article  CAS  Google Scholar 

  32. 32.

    Xu S, Bao J. Distributed control of plantwide chemical processes. J Process Control. 2009;19:1671–87.

    Article  CAS  Google Scholar 

  33. 33.

    Huang J, Goolcharran C, Ghosh K. A quality by design approach to investigate tablet dissolution shift upon accelerated stability by multivariate methods. Eur J Pharm Biopharm. 2011;78:141–50.

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Boukouvala F, Ramachandran R, Vanarase A, Muzzio FJ, Ierapetritou MG. Computer aided design and analysis of continuous pharmaceutical manufacturing processes. Comp Aided Chem Eng. 2011;29:216–20.

    Article  Google Scholar 

  35. 35.

    Portillio PM, Ierapetritou MG, Tomassone S, Mc Dade C, Clancy D, Avontuur PPC, Muzzio FJ. Using compartment modeling to investigate mixing behavior of a continuous mixer. J Pharm Innov. 2008;3:161–75.

    Article  Google Scholar 

  36. 36.

    W. Engisch, M. Ierapetritou, and F. J. Muzzio. Hopper refill of loss-in-weight feeding equipment. In Proceedings of the 2010 AIChE Annual Meeting, Salt Lake City, UT, USA, 2010.

  37. 37.

    Vanarase A, Muzzio FJ. Effect of operating conditions and design parameters in a continuous powder mixer. Powder Technol. 2011;208:26–36.

    Article  CAS  Google Scholar 

  38. 38.

    Ramachandran R, Immanuel CD, Stepanek F, Litster JD, Doyle III FJ. A mechanistic model for granule breakage in population balances of granulation: theoretical kernel development and experimental validation. Chem Eng Res Des. 2009;87:598–614.

    Article  CAS  Google Scholar 

  39. 39.

    Ramachandran R, Barton PI. Effective parameter estimation within a multi-dimensional population balance model framework. Chem Eng Sci. 2010;65:4884–93.

    Article  CAS  Google Scholar 

  40. 40.

    Poon JMH, Ramachandran R, Sanders CFW, Glaser T, Immanuel CD, Doyle III FJ, Litster JD, Stepanek F, Wang FY, Cameron IT. Experimental validation studies on a multi-scale and mult-dimensional population balance model of batch granulation. Chem Eng Sci. 2009;64:775–86.

    Article  CAS  Google Scholar 

  41. 41.

    Boukouvala F, Ramachandran R, Ierapetritou M, Muzzio FJ. Computational approaches for studying granular dynamics of continuous blending processes—ii. Macromol Mater Eng. 2011. doi:10.1002/mame.201100054.

  42. 42.

    Portillio PM, Ierapetritou MG, Tomassone S, Mc Dade C, Clancy D, Avontuur PPC, Muzzio FJ. Quality by design methodology for development and scale-up of batch mixing processes. J Pharm Innov. 2008;3:258–70.

    Article  Google Scholar 

  43. 43.

    Gao Y, Vanarase A, Muzzio F, Ierapetritou M. Characterizing continuous powder mixing using residence time distribution. Chem Eng Sci. 2011;66:417–25.

    Article  CAS  Google Scholar 

  44. 44.

    Nokhodchi A, Ford JL, Rowe PH, Rubenstein MH. The effects of compression rate and force on the compaction properties of different viscosity grades of hydroxypropylmethyl-cellulose 2208. Int J Pharm. 1996;129:21–31.

    Article  CAS  Google Scholar 

  45. 45.

    Zeng PC, Lovett D, Morris J. Process analytical technologies (PAT)—the impact for process systems engineering. Comp Aided Chem Eng. 2010;25:967–72.

    Google Scholar 

  46. 46.

    Wu H, Heilweil EJ, Hussain AS, Khan MA. Process analytical technologies (pat)—effects of instrumental and compositional variables in terahertz spectral data quality to characterize pharmaceutical materials and tablets. Comp Aided Chem Eng. 2007;343:148–58.

    CAS  Google Scholar 

  47. 47.

    Xiong ZH, Huang GH, Shao HH. Soft sensor modeling based on Gaussian processes. J Cent South Univ Technol. 2005;12:469–71.

    Article  Google Scholar 

  48. 48.

    Velasco MV, Ford JL, Rowe P, Rajabi-Siahboomi AR. Influence of drug: hydroxypropylmethylcellulose ratio, drug and polymer particle size and compression force on the release of diclofenac sodium from hpmc tablets. J Control Release. 1999;57:75–85.

    PubMed  Article  CAS  Google Scholar 

  49. 49.

    Jouili K, Jerbi H, Braiek NB. An advanced fuzzy logic gain scheduling trajectory control for nonlinear systems. J Process Control. 2010;20:426–40.

    Article  CAS  Google Scholar 

  50. 50.

    Ogunnaike BA, Ray WH. Process dynamics, modeling and control. London: Oxford University Press; 1994.

    Google Scholar 

  51. 51.

    Desborough LD, Harris TJ. Performance assessment measures for univariate feedback control. Can J Chem Eng. 1992;1992:1186–97.

    Article  Google Scholar 

  52. 52.

    Salsbury TI. Continuous-time model identification for closed loop control performance assessment. Control Eng Pract. 2007;2007:109–21.

    Article  Google Scholar 

  53. 53.

    Huang B, Ding SX, Thornhill N. Alternative solutions to multi-variate control performance assessment problems. J Process Control. 2006;2006:457–71.

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Science Foundation Engineering Research Center on Structured Organic Particulate Systems, through Grant NSF-ECC 0540855

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rohit Ramachandran.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ramachandran, R., Arjunan, J., Chaudhury, A. et al. Model-Based Control-Loop Performance of a Continuous Direct Compaction Process. J Pharm Innov 6, 249–263 (2011). https://doi.org/10.1007/s12247-011-9118-2

Download citation

Keywords

  • Model-based control
  • Continuous processing
  • Direct compaction
  • Control-loop performance
  • Pharmaceutical manufacturing