Skip to main content
Log in

A Fuzzy Logic Model of Deionised and Water for Injection Systems for Sizing and Capacity Assessment Under Uncertainty

  • Research Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

The operating performance of deionized and water for injection (DI/WFI) distribution systems can be difficult to analyse due to the highly variable demand that is drawn from these systems, a situation compounded by schedule uncertainties. This paper presents a fuzzy logic (FL) model of a typical DI/WFI system simulating schedule uncertainties in the opening and closing events of the offtake valves based on operator behaviour, e.g. tiredness of the operators. The model utilises discrete-event simulation to calculate the demand profile of the distribution system and a continuous simulation to compute the variation of the level in the storage tank. It is shown that the FL model may be useful in the design of new DI/WFI systems if little historical data are available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

acti,k :

Opening/closing event of valve i, k

\( {\text act}_{{{\text{i}},{\text{k}}}}^{\text{Wait}} \) :

Opening/closing event of valve i, k waiting to be served

fDiv :

Diversity factor

i:

Integer parameter

k:

Integer parameter

n:

Integer parameter

nop :

Number of operators

nop, min :

Minimum number of operators

Pri, k :

Priority rules for each acti, k

t:

Time (h:m:s)

tapi :

Valve of offtake point (tap) i along the distribution system

\( {\text{t}}_{{2,{\text{ j}}}}^{\text{B}} \) :

Beginning of core break (h:m:s)

\( {\text{t}}_{{3, {\text{j}}}}^{\text{B}} \) :

End of core break (h:m:s)

\( {\text{t}}_{{{\text{i}}, {\text{k}}}}^{\text{close}} \) :

Scheduled closing time for each acti, k (h:m:s)

\( {\text{t}}_{{{\text{i}},{\text{k}},new}}^{\text{close}} \) :

New closing time for each acti, k (h:m:s)

\( {\text{t}}_{{{\text{i}},{\text{k}}}}^{\text{D}} \) :

Time delay for each acti, k (h:m:s)

\( {\text{t}}_{{{\text{i}},{\text{k}}}}^{{{\text{D}},De}} \) :

Defuzzified time delay for each acti, k (%)

\( {\text{t}}_{{{\text{i}},{\text{k}}}}^{\text{Delay,1}} \) :

Time delay caused by operator for each acti, k (h:m:s)

\( {\text{t}}_{{{\text{i}},{\text{k}}}}^{{Delay,2}} \) :

Time delay caused by operator for each acti, k (h:m:s)

\( {\text{t}}_{{{\text{i}},{\text{k}}}}^{\text{Delay, No Op.}} \) :

Delay caused by no operator being available for acti, k (h:m:s)

\( {\text{t}}_{{{\text{i}},{\text{k}}}}^{\text{min,{\text{ D}}}} \) :

Minimum duration of each acti, k (h:m:s)

\( {\text{t}}_{{{\text{i}},{\text{ k}}}}^{{open}} \) :

Scheduled opening time for each acti, k (h:m:s)

\( {\text{t}}_{{{\text{i}},{\text{k}},\text new}}^{\text{open}} \) :

New closing time for each acti, k (h:m:s)

\( {\text{t}}_{{{\text{i}},{\text{k}},\text new}}^{\text{open,R1}} \) :

New opening time due to influence of rule 1 (h:m:s)

\( {\text{t}}_{{{\text{i}},{\text{k}},\text new}}^{\text{open,R4}} \) :

New opening time due to influence of rule 4 (h:m:s)

\( {\text{t}}_{{{\text{i}},{\text{k}},\text new}}^{\text{open,R5}} \) :

New opening time due to influence of rule 5 (h:m:s)

tsim :

Simulated time (s)

tmax :

Maximum allowable time (see rule 1) (h:m:s)

tRule1 :

Sum defined as: tSim + tmax (h:m:s)

t0 :

Time at start of simulated time (h:m:s)

\( \Delta {\text{t}}_{{{\text{i}},{\text{ k}}}}^{\text{offtake}} \) :

Opening/closing interval for each acti, k (h:m:s)

\( {\mathop{\text{V}}\limits^{ \bullet }_{\text{Design}}} \) :

Design flow rate (m3/h)

\( {\mathop{\text{V}}\limits^{ \bullet }_{\text{Max}}} \) :

Maximum flow rate (m3/h)

\( {\mathop{\text{V}}\limits^{ \bullet }_{\text{WFI,Blow}}} \) :

WFI generation blowdown (%)

\( {\mathop{\text{V}}\limits^{ \bullet }_{\text{WFI,Gen}}} \) :

Volumetric flow rate WFI from WFI generation plant (m3/h)

\( {\mathop{\text{V}}\limits^{ \bullet }_{\text{WFI,Gen,max}}} \) :

Maximum volumetric flow rate from WFI generating plant (m3/h)

VWFI, L :

WFI volume in the WFI storage tank (m3)

VWFI, L, C :

Temperature compensated water volume in WFI storage tank (m3)

VWFI, L, max :

Maximum allowable water volume in WFI storage tank (m3)

VWFI, L, min :

Minimum allowable water volume in the WFI storage tank (m3)

VWFI, L, St :

Start volume in WFI storage tank at t0 (m3)

\( {\mathop{\text{V}}\limits^{ \bullet }_{\text{WFI, off}}} \) :

Volumetric offtake from the WFI system (m3/h)

\( {\mathop{\text{V}}\limits^{ \bullet }_{\text{WFI, off,{\text{ i}}}}} \) :

Volumetric offtake for each acti (m3/h)

\( {\mathop{\text{V}}\limits^{ \bullet }_{\text{WFI,Pump}}} \) :

WFI Distribution pump delivery volume (m3/h)

XD :

Defuzzified value

\( {{\mu }}\mathop{{_{\text{B}}}}\limits_{\sim } ({\text{t}}) \) :

Membership function “operator break pattern” (h:m:s)

\( {{\mu }}_{{\mathop{\text{D}}\limits_{\sim } }}^{{{\text{i}},{\text{k}}}}({\text{t}}) \) :

Membership function “duration of tasks” for each acti, k (h:m:s)

\( {{\mu }}\mathop{{_{\text{S}}}}\limits_{\sim } ({\text{t}}) \) :

Membership function operator “shift pattern” (h:m:s)

\( {{\mu }}\mathop{{_{\text{T}}}}\limits_{\sim } ({\text{t}}) \) :

Membership function “operator tiredness”

\( {{\mu }}_{{\mathop{{Out}}\limits_{\sim } }}^{{0\% }}({\text{r}}), \ldots, {{\mu }}_{{\mathop{{Out}}\limits_{\sim } }}^{{100\% }}({\text{r}}) \) :

Membership function “output”

ρ20 :

Water density at 20°C: ρ20 = 998.21 kg/m3 (kg/m3)

ρ80 :

Water density at 80°C: ρ80 = 971.79 kg/m3 (kg/m3)

References

  1. Vieira GE, Herrmann JW, Lin E. Rescheduling manufacturing systems: a framework of strategies, policies, and methods. J Sched. 2003;6:39–62.

    Article  Google Scholar 

  2. Klir GJ, Wierman MJ. Uncertainty-based information: elements of generalized information theory. 2nd ed. Heidelberg: Physica; 1999.

    Google Scholar 

  3. Ross TJ. Fuzzy logic with engineering applications. 2nd ed. West Sussex: Wiley; 2004.

    Google Scholar 

  4. Zimmermann H-J. Fuzzy set theory and its applications. 2nd ed. Dordrecht: Kluwer Academic; 1992.

    Google Scholar 

  5. Meltzer TH. High-purity water preparation: for the semiconductor, pharmaceutical, and power industries. 2nd ed. Littleton: Tall Oaks; 1997.

    Google Scholar 

  6. Martinez JE. Hyperthermophilic microorganisms and USP hot water systems, Pharma. Technol., 2004; 50–65.

  7. Anonymous. Water and steam systems. 1st ed. Tampa: International Society for Pharmaceutical Engineering (ISPE); 2001.

    Google Scholar 

  8. Wu M, Sun D, Tay JH. Development of a practical model for capacity evaluation of ultrapure water systems. Desalination. 2004;161:223–33.

    Article  CAS  Google Scholar 

  9. McQueen DHO, Hyland PR, Watson SJ. Monte Carlo simulation of residential electricity demand for forecasting maximum demand on distribution networks. IEEE Trans Power Sys. 2004;19:1685–9.

    Article  Google Scholar 

  10. Dubois D, Prade H. Possibility theory: an approach to computerized processing of uncertainty. New York: Plenum; 1988.

    Google Scholar 

  11. Dubois D. Possibility theory and statistical reasoning. Comput Stat Data Anal. 2006;51:47–69.

    Article  Google Scholar 

  12. Zadeh LA. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1978;1:3–28.

    Article  Google Scholar 

  13. Zhang H, Tam CM, Li H. Modeling uncertain activity duration by fuzzy number and discrete-event simulation. Eur J Opera Res. 2005;164:715–29.

    Article  Google Scholar 

  14. Nucci F, Grieco A. System analysis and assessment by fuzzy discrete event simulation. In: 2006 IEEE international conference on fuzzy systems, Vancouver, BC, Canada; 2006. p. 1591–8.

  15. Azzaro-Pantel C, Floquet P, Pibouleau L, Serge D. A fuzzy approach for performance modeling in a batch plant: application to semiconductor manufacturing. IEEE Trans Fuzzy Syst. 1997;5:338–57.

    Article  Google Scholar 

  16. Dassisti M, Galantucci LM. Pseudo-fuzzy discrete-event simulation for on-line production control. Comp Ind Eng. 2005;49:266–86.

    Article  Google Scholar 

  17. Zeng J, An M, Smith NJ. Application of a fuzzy based decision making methodology to construction project risk assessment. Int J Proj Manag. 2007;25:589–600.

    Article  Google Scholar 

  18. Zadeh LA. From computing with numbers to computing with words—from manipulation of measurements to manipulation of perceptions. Int J Appl Math Comput Sci. 2002;12:307–24.

    Google Scholar 

  19. Perrone G, Zinno A, Diega SNL. Fuzzy discrete event simulation: a new tool for rapid analysis of production systems under vague information. J Intell Manuf. 2001;12:309–26.

    Article  Google Scholar 

  20. Zadeh LA. The concept of a linguistic variable and its application to approximate reasoning I. Inf Sci. 1975;8:199–249.

    Article  Google Scholar 

  21. Zadeh LA. Generalized theory of uncertainty (GTU)—principal concepts and ideas. Comput Stat Data Anal. 2006;51:15–46.

    Article  Google Scholar 

  22. Junker BH, Stanik M, Adamca J, LaRiviere K, Abbatiello M, Salmon P. An ambient water loop system for USP purified water. Bioprocess Eng. 1997;17:277–86.

    Article  CAS  Google Scholar 

  23. Jay SM, Drew D, Sally F, Nicole L. Driver fatigue during extended rail operations. Appl Ergon. 2008;39:623–9.

    Article  PubMed  Google Scholar 

  24. Bloom W. Shift work and human efficiency, in: studies in personnel and industrial psychology. Homewood: Dorsey; 1967.

    Google Scholar 

  25. Anders J, Fröberg JE. Work schedules and biological clocks. Ambio. 1975;4:45–50.

    Google Scholar 

  26. Dahlgren K. Shiftwork, work scheduling and their impact upon operators in nuclear power plants. In: Conference record for 1988 IEEE fourth conference on human factors and power plants; 1988. p. 517–21.

  27. Anonymous. EC Council Directive 93/104/EC of 23rd November 1993 Concerning certain aspects of the organization of working time. European Commission, http://eur-lex.europa.eu/smartapi/cgi/sga_doc?smartapi!celexapi!prod!CELEXnumdoc&lg=en&numdoc=31993L0104&model=guichett. Accessed 2 Mar 2010.

  28. Luyben ML, Luyben WL. Essentials of process control. New York: McGraw-Hill; 1993.

    Google Scholar 

  29. Banks J., editor. Handbook of simulation: principles, methodology, advances, applications, and practice. New York: Wiley; 1998.

  30. Alexander CW. Discrete event simulation for batch processing. In: Proceedings of the 2006 winter simulation conference; 2006. p. 1929–34.

  31. Saraph PV. Biotech industry: simulation and beyond. In: Proceedings of the 2001 winter simulation conference, Arlington, Virginia; 2001. p. 838–43.

  32. Law AM, Kelton DM. Simulation modeling and analysis. 2nd ed. New York: McGraw-Hill; 1991.

    Google Scholar 

  33. Sargent RG. Verification and validation of simulation models. In Proceedings of the 2007 winter simulation conference; 2007. p. 124–37.

  34. Download DI/WFI fuzzy logic Excel simulation spreadsheet. University College Cork, Department of Process & Chemical Engineering. http://www.ucc.ie/processeng/links/utility/FuzzyModel.

  35. Green J, Bullen S, Bovey R, Alexander M. Excel 2007 VBA programmers reference. Indianapolis: Wiley; 2007.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Riedewald.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riedewald, F., Byrne, E. & Cronin, K. A Fuzzy Logic Model of Deionised and Water for Injection Systems for Sizing and Capacity Assessment Under Uncertainty. J Pharm Innov 6, 125–141 (2011). https://doi.org/10.1007/s12247-011-9108-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-011-9108-4

Keywords

Navigation