Skip to main content
Log in

Purdue Ontology for Pharmaceutical Engineering: Part II. Applications

  • Research Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

The multiple steps in pharmaceutical product development generate a large amount of diverse information in various formats, which hinders efficient decision-making. A major component of the solution is a common information model for the domain. Ontologies were found to meet this need as described in Part I of this two-part paper. In Part II, we describe two applications of Purdue Ontology for Pharmaceutical Engineering. The first application deals with the prediction of degradation reactions through incorporation of molecular structure and environmental information captured in the ontologies. The second application is one that analyzes experiments to identify differences in experimental implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gruber TR. A translation approach to portable ontology specification. Kno Acq. 1993;5(2):199–220.

    Article  Google Scholar 

  2. Venkatasubramanian V, Zhao C, Joglekar G, Jain A, Hailemariam L, Suresh P, et al. Ontological Informatics Infrastructure for chemical product design and process development. Comp & Chem Engg. 2006;30(10–12):1482–96.

    Article  CAS  Google Scholar 

  3. Zhao C, Jain A, Hailemariam L, Suresh P, Akkisetty P, Joglekar G, et al. Towards intelligent decision support for pharmaceutical product development. J Ph Inn. 2006;1(1):23–35.

    Article  Google Scholar 

  4. Hailemariam L, Venkatasubramanian V. Purdue ontology for pharmaceutical engineering: part I. Conceptual framework. J Ph Inn. 2010. doi:10.1007/s12247-010-9081-3.

    Google Scholar 

  5. Cache: http://www.cache.fujitsu.com/. Accessed Feb 2008.

  6. SPARTAN: http://www.wavefun.com/products/spartan.html. Accessed Feb 2008.

  7. Socorro IM, Taylor K, Goodman JM. ROBIA: a reaction prediction program. Org Lett. 2005;7(16):3541–4.

    Article  CAS  PubMed  Google Scholar 

  8. LHASA: http://www.lhasalimited.org. Accessed Feb 2008.

  9. SWRL: http://www.w3.org/Submission/SWRL/. Accessed Feb 2008.

  10. Ahuja S, Alsante KM. Handbook of isolation and characterization of impurities in pharmaceuticals. New York: Elsevier; 2003.

    Google Scholar 

  11. Baertschi S. Pharmaceutical stress testing: predicting drug degradation. In: Drugs and the Pharmaceutical Sciences. Vol. 153. Boca Raton FL: Taylor and Francis Group; 2005.

  12. Zartler ER, Shapiro MJ. Fragonomics: fragment-based drug discovery. Curr Op Chem Bio. 2005;9:366–70.

    Article  CAS  Google Scholar 

  13. Chemistry Thesaurus: http://www.chemthes.com/. Accessed Feb 2008.

  14. Merck Index: http://www.cambridgesoft.com/databases/details/?db=1. Accessed Feb 2008.

  15. CDK: http://almost.cubic.uni-koeln.de/cdk/cdk_top. Accessed Feb 2008.

  16. Protégé Datamaster: http://protege.cim3.net/cgi-bin/wiki.pl?DataMaster. Accessed Feb 2008.

  17. Maldonado AG, Doucet JP, Petitjean M, Fan BT. Molecular similarity and diversity in chemoinformatics: from theory to applications. Mol Div. 2006;10:39–79.

    Article  CAS  Google Scholar 

  18. FDA guidelines: http://www.fda.gov/cvm/Guidance/fguide91.PDF. Accessed Feb 2008.

  19. Lavine B, Workman JJ. Chemometrics. Anal Chem. 2004;76:3365–72.

    Article  CAS  PubMed  Google Scholar 

  20. Nijhuis M.B, Van den Heuvel ER. Closed-form confidence intervals on measures of precision for an inter-laboratory study. J Biopharm Stat. 2007;17:123–42.

    Article  PubMed  Google Scholar 

  21. Hughes G, Mills H, de Roure D, Frey J, Moreau L, Schraefel MC, et al. The semantic smart laboratory: a system for supporting the chemical eScientist. Org Biomol Chem. 2004;2:1–10.

    Article  Google Scholar 

  22. Morris K, Venugopal S, Eckstut M. Making the most of drug development data. Pharm Manuf. 2005;11:399–402.

    Google Scholar 

Download references

Acknowledgements

The work was done through the financial support of the Engineering Research Center for Structured Organic Particulate Systems, the Indiana 21st Century Fund, and Eli Lilly and Company. The authors thanks Balachandra Krishnamurthy, Gintaras Reklaitis, Kenneth Morris, Chunhua Zhao, Girish Joglekar, Shuo-Huan Hsu, Pradeep Suresh, Pavan Akkisetty, Prabir Basu, Henry Havel, Brian Good, Gus Hartauer, Steven Baertschi, Ahmad Almaya, Aktham Aburub, and David Long for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkat Venkatasubramanian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hailemariam, L., Venkatasubramanian, V. Purdue Ontology for Pharmaceutical Engineering: Part II. Applications. J Pharm Innov 5, 139–146 (2010). https://doi.org/10.1007/s12247-010-9091-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-010-9091-1

Keywords

Navigation