Skip to main content
Log in

Modeling and Control of Roller Compaction for Pharmaceutical Manufacturing. Part I: Process Dynamics and Control Framework

  • Research Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

We derive a dynamic model for roller compaction process based on Johanson’s rolling theory, which is used to predict the stress and density profiles during the compaction and the material balance equation which describes the roll gap change. The proposed model considers the relationship between the input parameters (roll pressure, roll speed, and feed speed) and output parameters (ribbon density and thickness), so it becomes possible to design, optimize, and control the process using the model-based approach. Currently, the operating conditions are mostly found by trial and error. The simulation case studies show the model can predict the ribbon density and gap width while varying roll pressure, feed speed, and roll speed. The roll pressure influences the ribbon density much more than roll speed and feed speed, and the roll gap is affected by all three input parameters. Both output variables are very insensitive to the fluctuation of inlet bulk density. If the ratio of feed speed to roll speed is kept constant, neither ribbon density nor gap width change, but the production rate changes proportionally with feed speed. Based on observations from simulations, a control scheme is proposed. Furthermore, Quality by Design of the roller compactor can be achieved by combining this model and optimization procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Shlieout G, Lammens RF, Kleinebudde P. Dry granulation with a roller compactor. Part I: the functional units and operation modes. Pharma Tech Europ. 2000;12(11):24–35.

    Google Scholar 

  2. Summers M, Aulton ME. Granulation. In: Aulton ME, editor. Pharmaceutics: The Science of Dosage Form Design. London: Churchill Livingstone; 2002. p. 364–78.

    Google Scholar 

  3. Kleinebudde P. Roll compaction/dry granulation: pharmaceutical applications. Europ J Pharma Biopharma. 2004;58:317–26.

    Article  CAS  Google Scholar 

  4. von Eggelkraut-Gottanka SG, Abed SA, Muller W, Schmidt PC. Roller compaction and tabletting of St. John’s Wort plant dry extract using a gap width and force controlled roller compactor. I. Granulation and tabletting of eight different extract batches. Pharma Dev Tech. 2002;7(4):433–45.

    Article  Google Scholar 

  5. Johanson JR. A rolling theory for granular solids. Trans ASME: J Appl Mech B. 1965;32(4):842–8.

    CAS  Google Scholar 

  6. Jenike AW, Shield RT. On the plastic flow of Coulomb Solids beyond original failure. Trans ASME: J Appl Mech B. 1959;81:599–602.

    Google Scholar 

  7. Marshall EA. A theory for the compaction of incompressible granular materials by rolling. J Inst Math Appl. 1973;12(1):21–36.

    Article  Google Scholar 

  8. Marshall EA. The Compaction of Granular Materials by Rolling II. The Effect of Material Compressibility. J Inst Math Appl. 1974;13:279–98.

    Google Scholar 

  9. Dec RT, Zavaliangos A, Cunningham JC. Comparison of various modeling methods for analysis of powder compaction in roller press. Powder Technol. 2003;130:265–71.

    Article  CAS  Google Scholar 

  10. Bindhumadhavan G, Seville JPK, Adams MJ, Greenwood RW, Fitzpartrick S. Roll compaction of a pharmaceutical excipient: experimental validation of rolling theory for granular solids. Chem Eng Sci. 2005;60:3891–7.

    Article  CAS  Google Scholar 

  11. Inghelbrecht S, Remon J-P, de Aguiar PF, Walczak B, Massart DL, Van De Velde F, et al. Instrumentation of a roller compactor and the evaluation of the parameter settings by neural networks. Int J Pharam. 1997;148:103–15.

    Article  CAS  Google Scholar 

  12. Turkoglu M, Aydin I, Murray M, Sakr A. Modeling a rooler-compaction process using neural networks and genetic algorithms. Europ J Pharma Biopharma. 1999;48:239–45.

    Article  CAS  Google Scholar 

  13. Mansa R, Bridson R, Greenwood R, Seville J, Barker H. Using intelligent software to predict the effects of formulation and processing parameters on roller compaction. Proc World Congress Agglomeration; Bangkok 2005.

  14. Sommer K, Hauser G. Flow and compression properties of feed solids for roll-type presses and extrusion presses. Powder Technol. 2003;130:272–6.

    Article  CAS  Google Scholar 

  15. Morris KR, Nail SL, Peck GE, Byrn SR, Griesser UJ, Stowell JG, et al. Advances in pharmaceutical materials and processing. Pharm Sci Technol Today. 1998;1(6):235–45.

    Article  CAS  Google Scholar 

  16. Gupta A, Peck GE, Miller RW, Morris KR. Influence of ambient moisture on the compaction behavior of microcrystalline cellulose powder undergoing uni-axial compression and roller-compaction: a comparative study using near-infrared spectroscopy. J Pharma Sci. 2005;94(10):2301–13.

    Article  CAS  Google Scholar 

  17. Li F, Meyer RF, Chern R, editors. understanding critical parameters in roller compaction process and development of a novel scaling method. AIChE 2006 Spring National Meeting; Orlando, FL; 2006

  18. Shlieout G, Lammens RF, Kleinebudde P, Bultmann M. Dry granulation with a roller compactor. Part II: evaluating the operation modes. Pharma Tech Europ. 2002;14(9):32–9.

    CAS  Google Scholar 

  19. Gereg GW, Cappola ML. Roller compaction feasibility for new drug candidates. Pharmaceutical Technology: Tableting and Granulation. 2002:14–23.

  20. Hu P-H, Ehmann KF. A dynamic model of the rolling process. Part I: homogeneous model. Int J Mach Tools Manuf. 2000;40(1):1–19.

    Article  Google Scholar 

  21. Guigon P, Simon O. Roll press design—influence of force feed systems on compaction. Powder Technol. 2003;130:41–8.

    Article  CAS  Google Scholar 

  22. Heckel RW. Density-pressure relationships in powder compaction. Trans Metall Soc AIME. 1961;221:671–5.

    CAS  Google Scholar 

  23. Heckel RW. An analysis of powder compaction phenomena. Trans Metall Soc AIME. 1961;221:1001–8.

    Google Scholar 

  24. Kawakita K, Ludde K-H. Some considerations on powder compression equations. Powder Technol. 1971;4(2):61–8.

    Article  Google Scholar 

  25. Panelli R, Ambrozio Filho F. A study of a new phenomenological compacting equation. Powder Technol. 2001;114:255–61.

    Article  CAS  Google Scholar 

  26. Panelli R, Ambrozio F. Compaction equation and its use to describe powder consolidation behaviour. Powder Metall. 1998;41(2):131–3.

    CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to acknowledge the research funding source from the NSF Engineering Research Center for Structured Organic Particulate Systems (ERC-SOPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkat Venkatasubramanian.

Glossary

A

Compact surface area

B

\(\frac{1}{2}{\left( {\frac{\pi }{2} + \theta + \nu } \right)}\), a function of θ

C 1

Pre-exponential coefficient in the model of material compression

dV

Differential volume

F

Roll-separating force per unit roll width

h 0

Half of roll gap width

hmin, hmax

Minimum and maximum allowable values of h 0

K

Compressibility factor

P d

Hydraulic pressure (set point)

P h

Hydraulic pressure (actual value)

Pmin, Pmax

Minimum and maximum allowable values of P h

\( {\mathop m\limits^ \cdot } \)

Production rate

N(a, b)

Normal distribution with mean a and variance b

R

Radius of the rollers

s

Complex argument in Laplace domain

s in

standard deviation of inlet powder density

t

time

u d

Feed speed (set point)

u in

Feed speed (actual value)

umin, umax

Minimum and maximum allowable values of u in

W

Roll width

x in

Rsin θin

α

Nip angle

Δ

Effective angle of friction

θ

Angular position

θ in

π/2 − ν

μ

\( \frac{\pi }{4} - \frac{\delta }{2}\)

v

\(\frac{1}{2}{\left( {\pi - \sin ^{{ - 1}} \frac{{\sin \phi }}{{\sin \delta }} - \phi } \right)}\)

ρ

Compact density

ρ exit

Compact density at exit point

\(\rho ^{*}_{{{\text{exit}}}} \)

Desired ribbon density

ρ in

Inlet powder density

\( \overline{\rho } _{{{\text{in}}}} \)

Average of inlet powder density

σ

Material stress, a function of θ

σ exit

σ(θ = 0), material stress at exit point

τ p

Time constant of the roll force response due to the change of hydraulic pressure

τ u

Time constant of the feed speed response

τ ω

Time constant of the roll speed response

Φ

Cost function

ϕ

Angle of wall friction

ω

Angular velocity of the rolls (actual value)

ω d

Angular velocity of the rolls (set point)

ωmin, ωmax

Minimum and maximum allowable values of roll speed

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsu, SH., Reklaitis, G.V. & Venkatasubramanian, V. Modeling and Control of Roller Compaction for Pharmaceutical Manufacturing. Part I: Process Dynamics and Control Framework. J Pharm Innov 5, 14–23 (2010). https://doi.org/10.1007/s12247-010-9076-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-010-9076-0

Keywords

Navigation