Skip to main content
Log in

Figures of Merit Comparison of Reflectance and Transmittance Near-Infrared Methods for the Prediction of Constituent Concentrations in Pharmaceutical Compacts

  • Research Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

The purpose of this work was to demonstrate how multivariate figures of merit, in conjunction with accuracy and precision statistics, can be used to evaluate the performance of near-infrared reflectance and transmittance spectroscopy for the nondestructive chemical quantification of intact pharmaceutical compacts. A total of 174 four-component compacts were produced at five compaction pressures following a fully balanced quaternary design. Near-infrared spectra were measured in both reflectance and transmittance modes. Partial least-squares regression was used to model spectroscopic response, and net analyte signal theory was used to generate the figures of merit. It was discovered that sample positioning variation more negatively impacted the performance (analytical sensitivity, S/N ratio, limit of detection) of the transmittance method. Process analytical technology implementation teams should consider these aspects during technology selection, method development, and validation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. US Food and Drug Administration (FDA). (2004) PAT—a framework for innovative pharmaceutical development, manufacturing, and quality assurance. Available at: http://www.fda.gov/CDER/GUIDANCE/6419fnl.pdf.

  2. Martens H, Naes T. Multivariate calibration. New York: Wiley; 1989.

    Google Scholar 

  3. Ellekjaer MR, Isaksson T. Assessment of maximum cooking temperatures in previously heat treated beef. Part 1: near infrared spectroscopy. J Sci Food Agric. 1992;59:335–43.

    Article  Google Scholar 

  4. Jeon KJ, Hwang ID, Hahn S, Yoon G. Comparison between transmittance and reflectance measurements in glucose determination using near infrared spectroscopy. J Biomed Opt. 2006;11:14022–8.

    Article  Google Scholar 

  5. Borjesson T, Stenberg B, Schnurer J. Near-infrared spectroscopy for estimation of ergosterol content in barley: A comparison between reflectance and transmittance techniques. Cereal Chem. 2007;84:231–6.

    Article  Google Scholar 

  6. Varadi M, Hruschka W, Norris KH. Investigation into the applicability of diffuse reflectance and transmittance technology to tobacco analysis. Acta Alimentaria. 1992;21:95–106.

    CAS  Google Scholar 

  7. Ellekjaer MR, Hildrum KI, Naes T, Isaksson T. Determination of the sodium chloride content of sausages by near-infrared spectroscopy. J Near Infrared Spectrosc. 1993;1:65–75.

    CAS  Google Scholar 

  8. McKenna D. Measuring moisture in cheese by near infrared absorption spectroscopy. J AOAC Int. 2001;84:623–8.

    PubMed  CAS  Google Scholar 

  9. Thygesen LG. Determination of dry matter content and basic density of Norway spruce by near infrared reflectance and transmittance spectroscopy. J Near Infrared Spectrosc. 1994;2:127–35.

    CAS  Google Scholar 

  10. Mitsumoto M, Maeda S, Mitsuhashi T, Ozawa S. Near-infrared spectroscopy determination of physical and chemical characteristics in beef cuts. J Food Sci. 1991;56:1493–6.

    Article  CAS  Google Scholar 

  11. Segtnan VH, Isaksson T. Evaluating near infrared techniques for quantitative analysis of carbohydrates in fruit juice model systems. J Near Infrared Spectrosc. 2000;8:109–16.

    CAS  Google Scholar 

  12. Baye TM, Pearson TC, Settles AM. Development of a calibration to predict maize seed composition using single kernel near infrared spectroscopy. J Cereal Sci. 2006;43:236–43.

    Article  CAS  Google Scholar 

  13. Kays SE, Shimizu N, Barton FE II, Ohtsubo K. Near-infrared transmission and reflectance spectroscopy for the determination of dietary fiber in barley cultivars. Crop Sci. 2005;45:2307–11.

    Article  CAS  Google Scholar 

  14. Scholz E, Prieto-Linde ML, Gergely S, Salgo A, Johansson E. Possibilities of using near infrared reflectance/transmittance spectroscopy for determination of polymeric protein in wheat. J Sci Food Agric. 2007;87:1523–32.

    Article  CAS  Google Scholar 

  15. Chen H, Marks BP. Evaluating previous thermal treatment of chicken patties by visible/near-infrared spectroscopy. J Food Sci. 1997;62:753–756, 780.

    Article  CAS  Google Scholar 

  16. Isaksson T, Miller CE, Naes T. Nondestructive NIR and NIT determination of protein, fat, and water in plastic-wrapped, homogenized meat. Appl Spectrosc. 1992;46:1685–94.

    Article  CAS  Google Scholar 

  17. Rodriguez-Saona LE, Fry FS, McLaughlin MA, Calvey EM. Rapid analysis of sugars in fruit juices by FT-NIR spectroscopy. CarbohydR Res. 2001;336:63–74.

    Article  PubMed  CAS  Google Scholar 

  18. Otsuka M, Tanabe H, Osaki K, Otsuka KYO. Chemoinformetrical evaluation of dissolution property of indomethacin tablets by near-infrared spectroscopy. J Pharm Sci. 2007;96:788–801.

    Article  PubMed  CAS  Google Scholar 

  19. Schneider RC, Kovar K-A. Analysis of ecstasy tablets: Comparison of reflectance and transmittance near infrared spectroscopy. Forensic Sci Int. 2003;134:187–95.

    Article  PubMed  CAS  Google Scholar 

  20. Gottfries J, Depui H, Fransson M, Jongeneelen M, Josefson M, Langkilde FW, Witte DT. Vibrational spectrometry for the assessment of active substance in metroprolol tablets: A comparison between transmission and diffuse reflectance near-infrared spectrometry. J Pharmaceut Biomed. 1996;14:1495–503.

    Article  CAS  Google Scholar 

  21. Thosar SS, Forbess RA, Ebube NK, Chen Y, Rubinovitz RL, Kemper MS, Reier GE, Wheatley TA, Shukla AJ. A comparison of reflectance and transmittance near-infrared spectroscopic techniques in determining drug content in intact tablets. Pharm Dev Technol. 2001;6:19–29.

    Article  PubMed  CAS  Google Scholar 

  22. Merckle P, Kovar K-A. Assay of effervescent tablets by near-infrared spectroscopy in transmittance and reflectance mode: Acetylsalicylic acid in mono and combination formulations. J Pharmaceut Biomed. 1998;17:365–74.

    Article  CAS  Google Scholar 

  23. Williams PC, Sobering DC. Comparison of commercial near infrared transmittance and reflectance instruments for analysis of whole grains and seeds. J Near Infrared Spectrosc. 1993;1:25–32.

    CAS  Google Scholar 

  24. Cogdill RP, Anderson CA, Delgado-Lopez M, Molseed D, Chisholm R, Bolton R, Herket T, Afnan AM, Drennen III JK. Process analytical technology case study part I: feasibility studies for quantitative near-infrared method development. AAPS PharmSciTech. 2005;6, Article 37.

  25. Morgan DR. Spectral absorption pattern detection and estimation. I. Analytical techniques. Appl Spectrosc. 1977;31:404–15.

    Article  CAS  Google Scholar 

  26. Lorber A. Error propagation and figures of merit for quantification by solving matrix equations. Anal Chem. 1986;58:1167–72.

    Article  CAS  Google Scholar 

  27. Olivieri AC, Faber NM, Ferre J, Boque R, Kalivas JH, Mark H. Uncertainty estimation and figures of merit for multivariate calibration. Pure Appl Chem. 2006;78:633–61.

    Article  CAS  Google Scholar 

  28. Lorber A, Faber K, Kowalski BR. Net analyte signal calculation in multivariate calibration. Anal Chem. 1997;69:1620–6.

    Article  CAS  Google Scholar 

  29. Brown CD. Discordance between net analyte signal theory and practical multivariate calibration. Anal Chem. 2004;76:4364–73.

    Article  PubMed  CAS  Google Scholar 

  30. Boelens HF, Kok WT, de Noord OE, Smilde AK. Performance optimization of spectroscopic process analyzers. Anal Chem. 2004;76:2656–63.

    Article  PubMed  CAS  Google Scholar 

  31. Ferre J, Brown SD, Rius FX. Improved calculation of the net analyte signal in inverse multivariate calibration. J Chemometr. 2001;15:537–53.

    Article  CAS  Google Scholar 

  32. Bro R, Andersen CM. Theory of net analyte signal vectors in inverse regression. J Chemometr. 2004;17:646–52.

    Article  Google Scholar 

  33. Goicoechea HC, Olivieri AC. Chemometric assisted simultaneous spectrophotometric determination of four-component nasal solutions with a reduced number of calibration samples. Anal Chim Acta. 2002;453:289–300.

    Article  CAS  Google Scholar 

  34. Braga JWB, Poppi RJ. Figures of merit for the determination of the polymorphic purity of carbamazepine by infrared spectroscopy and multivariate calibration. J Pharm Sci. 2004;93:2124–34.

    Article  PubMed  CAS  Google Scholar 

  35. Xu L, Schechter I. Wavelength selection for simultaneous spectroscopic analysis. Experimental and theoretical study. Anal Chem. 1996;68:2392–2400.

    Article  CAS  Google Scholar 

  36. Xu L, Schechter I. A calibration method free of optimum factor number selection for automated multivariate analysis. Experimental and theoretical study. Anal Chem. 1997;69:3722–30.

    Article  CAS  Google Scholar 

  37. Short SM, Cogdill RP, Anderson CA. Determination of figures of merit for near-infrared and raman spectrometry by net analyte signal analysis for a 4-component solid dosage system. AAPS PharmSciTech. 2007;8:Article 96.

  38. Geladi P, Kowalski BR. Partial least-squares regression: a tutorial. Anal Chim Acta. 1986;185:1–17.

    Article  CAS  Google Scholar 

  39. De Jong S. SIMPLS: An alternative approach to partial least squares regression. Chemometr Intell Lab. 1993;18:251–63.

    Article  Google Scholar 

  40. Cogdill RP, Drennen JK. Near-infrared spectroscopy. In: Brittain H, editor. Spectroscopy of pharmaceutical solids, vol. 160. New York: Taylor & Francis; 2006. p. 313–412.

    Google Scholar 

  41. ICH. ICH (International Conference on Harmonisation) harmonised tripartite guideline: validation of analytical procedures: text and methodology. Federal Register. 1997;62:27463–7.

    Google Scholar 

  42. Haaland DM, Thomas EV. Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information. Anal Chem. 1988;60:1193–202.

    Article  CAS  Google Scholar 

  43. Long GL, Winefordner JD. Limit of detection: a closer look at the IUPAC definition. Anal Chem. 1983;55:712A–24A.

    Article  CAS  Google Scholar 

  44. Berntsson O, Burger T, Folestad S, Danielsson L-G, Kuhn J, Fricke J. Effective sample size in diffuse reflectance near-IR spectrometry. Anal Chem. 1999;71:617–23.

    Article  CAS  Google Scholar 

  45. Savitzky A, Golay MJE. Smoothing and differentiation of data by simplified least squares procedures. Anal Chem. 1964;36:1627–39.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to express their thanks to FOSS NIRSystems, Inc. for the use of the spectrometers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl A. Anderson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Short, S.M., Cogdill, R.P. & Anderson, C.A. Figures of Merit Comparison of Reflectance and Transmittance Near-Infrared Methods for the Prediction of Constituent Concentrations in Pharmaceutical Compacts. J Pharm Innov 3, 41–50 (2008). https://doi.org/10.1007/s12247-008-9020-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-008-9020-8

Keywords

Navigation