Skip to main content
Log in

NLOS identification and mitigation in UWB positioning with bagging-based ensembled classifiers

  • Published:
Annals of Telecommunications Aims and scope Submit manuscript

Abstract

The identification and mitigation of nonline-of-sight (NLOS) paths play crucial roles in effectively localizing sensor nodes deployed in both indoor and urban outdoor environments. In this work, the NLOS identification and mitigation tasks are performed using the bagging-based ensembled classifier. The proposed method is compared to other state-of-the-art approaches, and promising results, such as higher classification accuracy, are obtained. The received signal waveform is used as raw data, and further statistical features are extracted from the channel impulse response (CIR). The classification performances are analyzed over varying feature subsets, and associated hyperparameters are validated on three datasets. The obtained results strongly suggest implementing the bagging classifier with a proper selection of features and hyperparameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yin J, Wan Q, Yang S, Ho KC (2016) A simple and accurate tdoa-aoa localization method using two stations. IEEE Sig Process Lett 23(1):144–148

    Article  Google Scholar 

  2. Nguyen NH, Doganay K (2016) Optimal geometry analysis for multistatic TOA localization. IEEE Trans Sig Process 64(16):4180–4193

    Article  MathSciNet  MATH  Google Scholar 

  3. Wang G, Yang K (2011) A new approach to sensor node localization using rss measurements in wireless sensor networks. IEEE Trans Wirel Commun 10(5):1389–1395

    Article  Google Scholar 

  4. Marano S, Gifford WM, Wymeersch H, Win MZ (2010) Nlos identification and mitigaion for localization based on uwb experimental data. IEEE J Sel Areas Commun 28(7):1026–1035

    Article  Google Scholar 

  5. Ke W, Wu L (2011) Mobile location with nlos identification and mitigation based on modified kalman filtering. Sensors 11(2):1641–1656

    Article  Google Scholar 

  6. Hua J, Yin Y, Lu W, Zhang Y, Li F (2018) Nlos identification and positioning algorithm based on localization residual in wireless sensor networks. Sensors 18(9)

  7. Xiao Z, Wen H, Markham A, Trigoni N, Blunsom P, Frolik J (2013) Identification and mitigation of non-line-of-sight conditions using received signal strength. In: International conference on wireless and mobile computing, networking and communications, pp 667–674

  8. Barral V, Escudero CJ, Garcia-Naya JA, Maneiro-Catoira R (2019) Nlos identification and mitigation using low-cost uwb devices. Sensors 19(16):1–15

    Article  Google Scholar 

  9. Bregar K, Hrovat A, Mohorcic M (2016) Nlos channel detection with multilayer perceptron in low-rate personal area networks for indoor localization accuracy improvement. In: Proceedings of the 8th Joef Stefan international postgraduate school students conference, pp 1–10

  10. Fresno JM, Robles G, Martnez-Tarifa JM, Stewart BG (2017) Survey on the performance of source localization algorithms. Sensors 17(11):1–25

    Article  Google Scholar 

  11. Khodjaev J, Park Y, Malik AS (2010) Survey of nlos identification and error mitigation problems in uwb-based positioning algorithms for dense environments. Ann Telecommun 65(5-6):301–311

    Article  Google Scholar 

  12. Guvenc I, Chong C, Watanabe F (2007) Nlos identification and mitigation for uwb localization systems. In: 2007 IEEE wireless communications and networking conference, pp 1571– 1576

  13. Xiao Z, Wen H, Markham A, Trigoni N, Blunsom P, Frolik J (2014) Non-line-of-sight identification and mitigation using received signal strength. IEEE Trans Wirel Commun 14(3):1689–1702

    Article  Google Scholar 

  14. Destino G, Macagnano D, de Abreu GTF (2007) Hypothesis testing and iterative wlsminimization for wsn localization under los/nlos conditions. In: 2007 conference record of the forty-first asilomar conference on signals, systems and computers, pp 2150–2155

  15. Tian S, Zhao L, Li G (2014) A support vector data description approach to NLOS identification in UWB positioning. Math Probl Eng 2014:1–7

    Google Scholar 

  16. Cheng L, Li Y, Wang Y, Bi Y, Feng L, Xue M (2019) A triple-filter nlos localization algorithm based on fuzzy c-means for wireless sensor networks. Sensors 19(5):1–24

    Article  Google Scholar 

  17. Musa A, Nugraha GD, Han H, Choi D, Seo S, Kim J (2019) A decision tree-based nlos detection method for the uwb indoor location tracking accuracy improvement. Int J Commun Syst 32(13):39–97

    Article  Google Scholar 

  18. Nessa A, Adhikari B, Hussain F, Fernando XN (2020) A survey of machine learning for indoor positioning. IEEE Access 8:214945–214965

    Article  Google Scholar 

  19. Sang CL, Steinhagen B, Homburg JD, Adams M, Hesse M, Rckert U (2020) Identification of nlos and multi-path conditions in uwb localization using machine learning methods. Appl Sci 10(11):1–25

    Article  Google Scholar 

  20. Yang X, Zhao F, Chen T (2018) Nlos identification for uwb localization based on import vector machine. AEU-Int J Electron Commun 87:128–133

    Article  Google Scholar 

  21. Cui Z, Gao Y, Hu J, Tian S, Cheng J (2021) Los/nlos identification for indoor uwb positioning based on morlet wavelet transform and convolutional neural networks. IEEE Commun Lett 25(3):879–882

    Article  Google Scholar 

  22. Park J, Nam S, Choi H, Ko Y, Ko YB (2020) Improving deep learning-based uwb los/nlos identification with transfer learning: An empirical approach. Electronics 9(10):1–13

    Google Scholar 

  23. Chen S, Zhang J, Mao Y, Xu C, Gu Y (2019) Efficient distributed method for nlos cooperative localization in wsns. Sensors 19(5):1–19

    Article  Google Scholar 

  24. Zhang H, Qi X, Wei Q, Liu L (2020) TOA nlos mitigation cooperative localisation algorithm based on topological unit. IET Sig Process 14(10):765–773

    Article  Google Scholar 

  25. Tabaa M, Diou C, El Aroussi M, Chouri B, Dandache A (2013) Los and nlos identification based on uwb stable distribution. In: 2013 25th international conference on microelectronics (ICM), pp 1–4

  26. (2008) Top 10 algorithms in data mining, vol. 14

  27. Dietterich T, Michalski R (1981) Inductive learning of structural descriptions evaluation criteria and comparative review of selected methods

  28. Fernandez-Delgado M, Cernadas E, Barro S, Amorim D, Amorim DF-D (2014) Do we need hundreds of classifiers to solve real world classification problems? J Mach Learn Res 15:3133–3181

    MathSciNet  MATH  Google Scholar 

  29. Roddick JF, Spiliopoulou M (2002) A survey of temporal knowledge discovery paradigms and methods. IEEE Trans Knowl Data Eng 14(4):750–767

    Article  Google Scholar 

  30. Zhang J, Zhang ZH, Lin Y, Chen N, Gong YJ, Zhong JH, Chung HS, Li Y, Shi YH (2011) Evolutionary computation meets machine learning: A survey. IEEE Comput Intell Mag 6(4):68–75

    Article  Google Scholar 

  31. Zhang ML, Zhou ZH (2014) A review on multi-label learning algorithms. IEEE Trans Knowl Data Eng 26(8):1819–1837

    Article  Google Scholar 

  32. Quinlan JR (1986) Induction of decision trees. Mach Learn 1(1):81–106

    Google Scholar 

  33. Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  MATH  Google Scholar 

  34. Moisen GG (2000) Classification and regression trees. Encycl Ecol pp 582–588

  35. Rokach L, Maimon O (2005) Top-Down Induction of Decision Trees Classifiers A Survey. IEEE Trans Syst Man Cybern Part C Appl Rev 35(4):476–487

    Article  Google Scholar 

  36. Safavian SR, Landgrebe D (1991) A survey of decision tree classifier methodology. IEEE Trans Syst Man Cybern 21(3):660–674

    Article  MathSciNet  Google Scholar 

  37. Patro RN, Subudhi S, Biswal PK, Acqua FD (2019) Dictionary-based classifiers for exploiting feature sequence information and their application to hyperspectral remotely sensed data. Int J Remote Sens 0(0):1–29

    Google Scholar 

  38. Bermejo P, Gamez JA, Puerta JM (2014) Speeding up incremental wrapper feature subset selection with naive bayes classifier. Knowl-Based Syst 55:140–147

    Article  Google Scholar 

  39. Lv Z, Zhang P, Benediktsson JA (2017) Automatic object-oriented, spectral-spatial feature extraction driven by Tobler’s first law of geography for very high resolution aerial imagery classification. Remote Sens 9(3):1–17

    Article  Google Scholar 

  40. Huang K, Li S, Kang X, Fang L (2016) Spectral spatial hyperspectral image classification based on knn. Sens Imaging 17(1):1–13

    Article  Google Scholar 

  41. Li W, Tramel EW, Prasad S, Fowler JE (2014) Nearest regularized subspace for hyperspectral classification. IEEE Trans Geosci Remote Sens 52(1):477–489

    Article  Google Scholar 

  42. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) Smote: synthetic minority over-sampling technique. J Artif Intell Res 16:321–357

    Article  MATH  Google Scholar 

  43. Subudhi S, Patro RN, Biswal PK (2019) Pso-based synthetic minority oversampling technique for classification of reduced hyperspectral image. In: Soft computing for problem solving, pp 617–625

  44. Seiffert C, Khoshgoftaar TM, Van Hulse J, Napolitano A (2009) Rusboost: A hybrid approach to alleviating class imbalance. IEEE Trans Syst Man Cyber Syst Hum 40(1):185–197

    Article  Google Scholar 

  45. Diaz GI, Fokoue-Nkoutche A, Nannicini G, Samulowitz H (2017) An effective algorithm for hyperparameter optimization of neural networks. IBM J Res Dev 61(4/5):9:1–9:11

    Article  Google Scholar 

  46. Yang L, Shami A (2020) On hyperparameter optimization of machine learning algorithms: Theory and practice. Neurocomputing 415:295–316

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very much thankful to Prof. Henk Wymseersch and Dr. Tian Shiwe for providing dataset-1, which helped us to validate the classifiers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arunanshu Mahapatro.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rayavarapu, V.C.S.R., Mahapatro, A. NLOS identification and mitigation in UWB positioning with bagging-based ensembled classifiers. Ann. Telecommun. 77, 267–280 (2022). https://doi.org/10.1007/s12243-021-00884-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12243-021-00884-6

Keywords

Navigation