Skip to main content
Log in

Parameter-free and fast nonlinear piecewise filtering: application to experimental physics

  • Published:
Annals of Telecommunications Aims and scope Submit manuscript

Abstract

Numerous fields of nonlinear physics, very different in nature, produce signals and images that share the common feature of being essentially constituted of piecewise homogeneous phases. Analyzing signals and images from corresponding experiments to construct relevant physical interpretations thus often requires detecting such phases and estimating accurately their characteristics (borders, feature differences, …). However, situations of physical relevance often comes with low to very low signal-to-noise ratio precluding the standard use of classical linear filtering for analysis and denoising and thus calling for the design of advanced nonlinear signal/image filtering techniques. Additionally, when dealing with experimental physics signals/images, a second limitation is the large amount of data that need to be analyzed to yield accurate and relevant conclusions requiring the design of fast algorithms. The present work proposes a unified signal/image nonlinear filtering procedure, with fast algorithms and a data-driven automated hyperparameter tuning, based on proximal algorithms and Stein unbiased estimator principles. The interest and potential of these tools are illustrated at work on low-confinement solid friction signals and porous media multiphase flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Auger T, Mathe J, Viasnoff V, Charron G, Di Meglio JM, Auvray L, Montel F (2014) Zero-mode waveguide detection of flow-driven dna translocation through nanopores. Phys Rev Lett 113(028):302

    Google Scholar 

  2. Babchin A, Brailovsky I, Gordon P, Sivashinsky G (2008) Fingering instability in immiscible displacement. Phys Rev E 77(026):301

    MathSciNet  Google Scholar 

  3. Baumberger T, Caroli C (2006) Solid friction from stick-slip down to pinning and aging. Adv Phys 55(3-4):279–348

    Article  Google Scholar 

  4. Bauschke HH, Combettes PL (2017) Convex analysis and monotone operator theory in Hilbert spaces, second edn. Springer, New York

    Book  Google Scholar 

  5. Benazza-Benyahia A, Pesquet JC (2005) Building robust wavelet estimators for multicomponent images using Stein’s principle. IEEE Trans Image Process 14(11):1814–1830

    Article  MathSciNet  Google Scholar 

  6. Berhanu M, Monchaux R, Fauve S, Mordant N, Petrelis F, Chiffaudel A, Daviaud F, Dubrulle B, Marie L, Ravelet F, Bourgoin M, Odier P, Pinton JF, Volk R (2007) Magnetic field reversals in an experimental turbulent dynamo. Eur Phys Lett 77(59):001

    Google Scholar 

  7. Busser T, Serres M, Philippe R, Vidal V (2020) Hydrodynamics of gas-liquid co-current flow through a thin sheet of highly porous open cell solid foam. in revision at Chem Eng Sci

  8. Cai JF, Dong B, Osher S, Shen Z (2012) Image restoration: total variation, wavelet frames, and beyond. J Amer Math Soc 25:1033–1089

    Article  MathSciNet  Google Scholar 

  9. Cai X, Chan R, Schonlieb CB, Steidl G, Zeng T (2018) Linkage between piecewise constant Mumford-Shah model and ROF model and its virtue in image segmentation. arXiv:1807.10194

  10. Cai X, Steidl G (2013) Multiclass segmentation by iterated ROF thresholding. In: International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition. Springer, pp 237–250

  11. Chambolle A (1995) Image segmentation by variational methods: Mumford and Shah functional and the discrete approximations. SIAM J Appl Math 55:827–863

    Article  MathSciNet  Google Scholar 

  12. Chambolle A, Pock T (2011) A first-order primal-dual algorithm for convex problems with applications to imaging. J Math Imag Vis 40(1):120–145

    Article  MathSciNet  Google Scholar 

  13. Colas J, Pustelnik N, Oliver C, Abry P, Géminard J. C., Vidal V (2019) Nonlinear denoising for characterization of solid friction under low confinement pressure. Phys Rev E 100(032):803

    Google Scholar 

  14. Combettes PL, Pesquet JC (2011) Proximal splitting methods in signal processing. In: Bauschke HH, Burachik RS, Combettes PL, Elser V, Luke DR, Wolkowicz H (eds) Fixed-point algorithms for inverse problems in science and engineering. Springer, New York, pp 185–212

  15. Combettes PL, Wajs VR (2005) Signal recovery by proximal forward-backward splitting. Multiscale Model and Simul 4(4):1168–1200

    Article  MathSciNet  Google Scholar 

  16. Condat L (2013) A primal-dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms. J Optim Theory Appl 158(2):460–479

    Article  MathSciNet  Google Scholar 

  17. Curtis FE, Mitchell T, Overton ML (2017) A BFGS-SQP method for nonsmooth, nonconvex, constrained optimization and its evaluation using relative minimization profiles. Optim Methods Softw 32(1):148–181

    Article  MathSciNet  Google Scholar 

  18. Deledalle CA, Vaiter S, Fadili J, Peyré G. (2014) Stein Unbiased GrAdient estimator of the Risk (SUGAR) for multiple parameter selection. SIAM J Imaging Sci 7(4):2448–2487

    Article  MathSciNet  Google Scholar 

  19. Divoux T, Gayvallet H, Geminard JC (2008) Creep motion of a granular pile induced by thermal cycling. Phys Rev Lett 101(148):303

    Google Scholar 

  20. Dobigeon N, Tourneret JY (2007) Joint segmentation of wind speed and direction using a hierarchical model. Comput Stat Data Anal 51(12):5603–5621

    Article  MathSciNet  Google Scholar 

  21. Dobigeon N, Tourneret JY, Davy M (2007) Joint segmentation of piecewise constant autoregressive processes by using a hierarchical model and a Bayesian sampling approach. IEEE Trans Signal Process 55(4):1251–1263

    Article  MathSciNet  Google Scholar 

  22. Donoho DL, Johnstone JM (1994) Ideal spatial adaptation by wavelet shrinkage. Biometrika 81(3):425–455

    Article  MathSciNet  Google Scholar 

  23. Eldar YC (2008) Generalized SURE for exponential families: Applications to regularization. IEEE Trans Signal Process 57(2):471–481

    Article  MathSciNet  Google Scholar 

  24. Frecon J, Pustelnik N, Dobigeon N, Wendt H, Abry P (2017) Bayesian selection for the 2,-Potts model regularization parameter: 1-D piecewise constant signal denoising. IEEE Trans Signal Process 65(19):5215–5224

    Article  MathSciNet  Google Scholar 

  25. Geman D, Geman S (1986) Bayesian image analysis. In: Disordered systems and biological organization. Springer, Berlin, pp 301–319

  26. Geman D, Reynolds G (1992) Constrained image restoration and the recovery of discontinuities. IEEE Trans Pattern Anal Match Int 14(3):367–383

    Article  Google Scholar 

  27. Geman S, Geman D (1987) Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. In: Readings in computer vision. Elsevier, pp 564–584

  28. Hessel V, Angeli P, Gavriilidis A, Löwe H. (2005) Gas-liquid and gas-liquid-solid microscructured reactors: Contacting principles and applications. Ind Eng Chem Res 44:9750–9769

    Article  Google Scholar 

  29. Jaffard S (2004) Wavelet techniques in multifractal analysis. Fractal geometry and applications: a jubilee of Benoit Mandelbrot. In: Lapidus M., van Frankenhuysen M. (eds) Proceedings of symposia in pure mathematics (AMS), vol 72, pp 91–152

  30. Kang Q, Tsimpanogiannis IN, Zhang D, Lichtner PC (2005) Numerical modeling of pore-scale phenomena during CO2 sequestration in oceanic sediments. Fuel Process Technol 86:1647–1665

    Article  Google Scholar 

  31. Kreutzer MT, Kapteijn F, Moulijn JA, Heiszwolf JJ (2005) Multiphase monolith reactors: chemical reaction engineering of segmented flow in microchannels. Chem Eng Sci 60:5895–5916

    Article  Google Scholar 

  32. Li SZ (2009) Markov random field modeling in image analysis, Springer, Berlin

  33. Lobel P, Pichot C, Blanc-Féraud L, Barlaud M (1997) Conjugate gradient algorithm with edge-preserving regularization for image reconstruction from ipswitch data for mystery objects. IEEE Antennas Propag Mag 39(2):12–13

    Article  Google Scholar 

  34. Marnissi Y, Chouzenoux E, Benazza-Benyahia A, Pesquet JC (2018) An auxiliary variable method for MCMC algorithms in high dimension, vol 20

  35. Marone C (1998) Laboratory-derived friction laws and their application to seismic faulting. Ann Rev Earth Planet Sci 26:643– 696

    Article  Google Scholar 

  36. Møller J (2003) Spatial statistics and computational methods. In: Lecture notes in statistics. Springer

  37. Nocedal J, Wright S (2006) Numerical optimization. Springer Science & Business Media, Berlin

    MATH  Google Scholar 

  38. Parikh N, Boyd S (2014) Proximal algorithms. In: Foundations and Trends®;, in Optimization, vol 1, pp 127–239

  39. Pascal B, Pustelnik N, Abry P (2019) How joint fractal features estimation and texture segmentation can be cast into a strongly convex optimization problem ?. arXiv:1910.05246

  40. Pascal B, Pustelnik N, Abry P, Serres M, Vidal V (2018) Joint estimation of local variance and local regularity for texture segmentation. Application to multiphase flow characterization. In: Proceedings of the international conference on image processing. IEEE, Athens, pp 2092–2096

  41. Pascal B, Vaiter S, Pustelnik N, Abry P (2020) Automated data-driven selection of the hyperparameters for total-variation based texture segmentation. arXiv:2004.09434

  42. Pereyra M, Dobigeon N, Batatia H, Tourneret JY (2013) Estimating the granularity coefficient of a Potts-Markov random field within an MCMC algorithm. IEEE Trans Image Process 22(6):2385–2397

    Article  MathSciNet  Google Scholar 

  43. Pustelnik N, Benazza-Benhayia A, Zheng Y, Pesquet JC (2016) Wavelet-based image deconvolution and reconstruction. In: Wiley encyclopedia of electrical and electronics engineering

  44. Ramani S, Blu T, Unser M (2008) Monte-carlo sURE: a black-box optimization of regularization parameters for general denoising algorithms. IEEE Trans Image Process 17(9):1540–1554

    Article  MathSciNet  Google Scholar 

  45. Reddy KR, Adams JA (2001) Effects of soil heterogeneity on airflow patterns and hydrocarbon removal during in situ air sparging. J Geotech Geoenviron Eng 127(3):234–247

    Article  Google Scholar 

  46. Rudin LI, Osher S, Fatemi E (1992) Nonlinear total variation based noise removal algorithms. Physica D:, Nonlinear Phenomena 60(1-4):259–268

    Article  MathSciNet  Google Scholar 

  47. Serres M (2017) Etude hydrodynamique d’un écoulement gaz-liquide dans un milieu poreux confiné. phDThesis, École Normale supérieure de Lyon. Université, de Lyon 203

  48. Serres M, Maison T, Philippe R, Vidal V (2018) A phenomenological model for bubble coalescence in confined highly porous media. Int J Multiph Flow 105:134–141

    Article  MathSciNet  Google Scholar 

  49. Serres M, Zanota ML, Philippe R, Vidal V (2016) On the stability of Taylor bubbles inside a confined highly porous medium. Int J Multiph Flow 85:157–163

    Article  Google Scholar 

  50. Stein CM (1981) Estimation of the mean of a multivariate normal distribution. Ann Stat 1135–1151

  51. Storath M, Weinmann A, Frikel J, Unser M (2015) Joint image reconstruction and segmentation using the Potts model. Inv Probl 31(2):025, 003

    Article  MathSciNet  Google Scholar 

  52. Vacar C, Giovannelli JF (2019) Unsupervised joint deconvolution and segmentation method for textured images: a Bayesian approach and an advanced sampling algorithm. EURASIP J Adv Signal Process, special issue on Advanced Computational Methods for Bayesian Signal Processing(17)

  53. Wendt H, Abry P, Jaffard S (2007) Bootstrap for empirical multifractal analysis. IEEE Signal Process Mag 24(4):38–48

    Article  Google Scholar 

  54. Wendt H, Roux SG, Abry P, Jaffard S (2009) Wavelet leaders and bootstrap for multifractal analysis of images. Signal Process 89(6):1100–1114

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Pascal.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pascal, B., Pustelnik, N., Abry, P. et al. Parameter-free and fast nonlinear piecewise filtering: application to experimental physics. Ann. Telecommun. 75, 655–671 (2020). https://doi.org/10.1007/s12243-020-00806-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12243-020-00806-y

Keywords

Navigation