Correction to: Annals of Telecommunications.

https://doi.org/10.1007/s12243-020-00762-7

Equations 21, 22, and 23 were incorrectly captured in the original manuscript. The correct equations are presented below.

Case 1: Rayleigh fading (m = 1, K = 0).

The expression in (20) can be reduced to Rayleigh fading by substituting the value of fading parameters, K = 0 and m = 1as follows:

$$ {C}_{ORA}=B\times {\log}_2(e)\times {\left(\frac{1}{\overline{\gamma}}\right)}^L\times \exp \left(\frac{1}{\overline{\gamma}}\right)\times \sum \limits_{t=0}^{\infty }{g}_t\times \sum \limits_{h=1}^{t+L}\frac{\Gamma \left(-t-L+h,\frac{1}{\overline{\gamma}}\right)}{{\left(\frac{1}{\overline{\gamma}}\right)}^h} $$
(21)

Case 2: Rician fading (m = 1, K > 0).

The expression in (20) can be reduced to Rician fading by substituting the value of fading parameters, K > 0 and m = 1as follows:

$$ {C}_{ORA}=B\times {\log}_2(e)\times {\left(\frac{K+1}{\overline{\gamma}}\right)}^L\times \exp \left(- KL+\frac{K+1}{\overline{\gamma}}\right)\times \sum \limits_{t=0}^{\infty }{g}_t\times \sum \limits_{h=1}^{t+L}\frac{\Gamma \left(-t-L+h,\frac{K+1}{\overline{\gamma}}\right)}{{\left(\frac{K+1}{\overline{\gamma}}\right)}^h} $$
(22)

Case 3: Nakagami-m fading (m > 0.5, K = 0).

The expression in (20) can be reduced to Nakagami-m fading by substituting the value of fading parameters, K = 0 and m > 0.5 as follows:

$$ {C}_{ORA}=B\times {\log}_2(e)\times {\left(\frac{m}{\overline{\gamma}}\right)}^L\times \exp \left(\frac{m}{\overline{\gamma}}\right)\times \sum \limits_{t=0}^{\infty }{g}_t\times \sum \limits_{h=1}^{t+L}\frac{\Gamma \left(-t-L+h,\frac{m}{\overline{\gamma}}\right)}{{\left(\frac{m}{\overline{\gamma}}\right)}^h} $$
(23)

Similarly, the expressions derived for other adaptive transmission techniques can be deduced as special case of BX fading channel.

The Publisher regrets this error.

The original article has been corrected.