Skip to main content
Log in

Empirical validation and performance of duty cycle–based DTMC model in channel estimation

  • Published:
Annals of Telecommunications Aims and scope Submit manuscript

Abstract

This paper explores the learning capability of hidden Markov model (HMM) in capturing the temporal correlation and predicting primary user (PU) activity pattern of real spectrum data of GSM-900 band through an USRP-LabVIEW platform for cognitive radio (CR) systems. The inability of the widely used stationary Markov model in estimating the occupancy pattern of primary channels for a long duration of time has been verified. We proposed an alternative duty cycle (DC)–based two-state discrete-time Markov chain (DTMC-DC) model. Analysis of empirical data indicates that DC required for a non-stationary DTMC-DC model can be well approximated by a trapezoidal shape and the PU spectrum usage pattern estimated using DTMC-DC is capable of learning the statistical behavior (length of idle and busy interval periods) of a real channel accurately with a reduced complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Monteiro JME (2012) Cognitive radio: survey on communication protocols, spectrum decision issues, and future research directions. Wirel Netw 18(2):147. https://doi.org/10.1007/s11276-011-0392-1

    Article  Google Scholar 

  2. Wang B, Liu KJR (2011) Advances in cognitive radio networks: a survey. IEEE J Sel Top Signal Process 5(1):5. https://doi.org/10.1109/JSTSP.2010.2093210

    Article  Google Scholar 

  3. Pandit G, Singh S (2017) An overview of spectrum sharing techniques in cognitive radio communication system. Wirel Netw 23(2):497. https://doi.org/10.1007/s11276-015-1171-1

    Article  Google Scholar 

  4. Liang YC, Zeng Y, Peh EC, Hoang AT (2008) Sensing-throughput tradeoff for cognitive radio networks. IEEE Trans Wirel Commun 7(4):1326

    Article  Google Scholar 

  5. Khalid L, Anpalagan A (2016) Adaptive assignment of heterogeneous users for group-based cooperative spectrum sensing. IEEE Trans Wirel Commun 15(1):232

    Article  Google Scholar 

  6. Chen CY, Chou YH, Chao HC, Lo CH (2012) Secure centralized spectrum sensing for cognitive radio networks. Wirel Netw 18(6):667. https://doi.org/10.1007/s11276-012-0426-3

    Article  Google Scholar 

  7. Thakur P, Kumar A, Pandit S, Singh SN, Satashia G (2017) Performance analysis of high-traffic cognitive radio communication system using hybrid spectrum access, prediction and monitoring techniques. Wirel Netw: 1–11. https://doi.org/10.1007/s11276-016-1440-7

  8. Sung KW, Kim SL, Zander J (2010) Temporal spectrum sharing based on primary user activity prediction. IEEE Trans Wirel Commun 9(12):3848

    Article  Google Scholar 

  9. He A, Bae KK, Newman TR, Gaeddert J, Kim K, Menon R, Morales-Tirado L, Zhao Y, Reed JH, Tranter WH et al (2010) A survey of artificial intelligence for cognitive radios. IEEE Trans Veh Technol 59(4):1578

    Article  Google Scholar 

  10. Saad W, Han Z, Poor HV, Basar T, JuBin S (2012) A cooperative bayesian nonparametric framework for primary user activity monitoring in cognitive radio networks. IEEE J Sel Areas Commun 30(9):1815

    Article  Google Scholar 

  11. Grimmer J (2011) An introduction to bayesian inference via variational approximations. Polit Anal 19(1):32

    Article  Google Scholar 

  12. Schrodt PA (2006) In: Programming for peace. Springer, pp 161–184

  13. Tumuluru VK, Wang P, Niyato D (2012) Channel status prediction for cognitive radio networks. Wireless Communications and Mobile Computing 12:862–874. https://doi.org/10.1002/wcm.1017

    Article  Google Scholar 

  14. Ahmadi H, Chew YH, Tang PK, Nijsure YA (2011) In: 2011 IEEE 22nd International Symposium on Personal, Indoor and Mobile Radio Communications, pp 401–405

  15. Cacciapuoti AS, Caleffi M, Marino F, Paura L (2016) On the impact of primary traffic correlation in tv white space. IEEE Access 4:7199

    Article  Google Scholar 

  16. Melián-Gutiérrez L, Zazo S, Blanco-Murillo JL, Pérez-Álvarez I, García-rodríguez A, Pérez-díaz B (2013) Hf spectrum activity prediction model based on hmm for cognitive radio applications. Phys Commun 9:199

    Article  Google Scholar 

  17. Chen Z, Guo N, Hu Z, Qiu RC (2011) Experimental validation of channel state prediction considering delays in practical cognitive radio. IEEE Trans Veh Technol 60(4):1314

    Article  Google Scholar 

  18. Nguyen T, Mark BL, Ephraim Y (2013) Spectrum sensing using a hidden bivariate markov model. IEEE Trans Wirel Commun 12(9):4582

    Article  Google Scholar 

  19. Akbar IA, Tranter WH (2007) In: SoutheastCon, 2007. Proceedings. IEEE. IEEE, pp 196–201

  20. Zhao Q, Swami A (2007) A decision-theoretic framework for opportunistic spectrum access. IEEE Wireless Communications 14(4):14–20. https://doi.org/10.1109/MWC.2007.4300978

    Article  Google Scholar 

  21. Rondeau TW, Rieser CJ, Gallagher TM, Bostian CW (2004) In: Microwave Symposium Digest, 2004 IEEE MTT-S International. IEEE, vol 2, pp 739–742

  22. Ghosh C, Cordeiro C, Agrawal DP, Rao MB (2009) In: IEEE International Conference on Pervasive Computing and Communications. IEEE, pp 1–6

  23. Carniani LVR, Giupponi A (2010) https://doi.org/10.1109/ew.2010.5483438

  24. Abdou A, Najajri O, Jamoos A (2017) In: 2017 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT), pp 1–5. https://doi.org/10.1109/AEECT.2017.8257748

  25. Luis RDRBL, Oliveira M (2017) Rf-spectrum opportunities for cognitive radio networks operating over gsm channels. IEEE Transactions on Cognitive Communications and Networking, pp 3. https://doi.org/10.1109/TCCN.2017.2771558

  26. Xing X, Jing T, Huo Y, Li H, Cheng X (2013) In: INFOCOM, 2013 Proceedings IEEE. IEEE, pp 1465–1473

  27. Chen X, Zhang H, MacKenzie AB, Matinmikko M (2014) Predicting spectrum occupancies using a non-stationary hidden markov model. IEEE Wirel Commun Lett 3(4):333

    Article  Google Scholar 

  28. Bepari D, Kumar P, Choudhary SK (2018) In: 2018 9th International Conference on Computing, Communication and Networking Technologies (ICCCNT), pp 1–5. https://doi.org/10.1109/ICCCNT.2018.8493839

  29. Macaluso I, Ahmadi H, DaSilva LA (2015) Fungible orthogonal channel sets for multi-user exploitation of spectrum. IEEE Trans Wirel Commun 14(4):2281

    Article  Google Scholar 

  30. López-Benítez M, Casadevall F (2011) In: 2011 IEEE Symposium on New Frontiers in Dynamic Spectrum Access Networks (DySPAN). IEEE, pp 90–99

  31. Lopez-Benitez M, Casadevall F (2011) Empirical time-dimension model of spectrum use based on a discrete-time markov chain with deterministic and stochastic duty cycle models. IEEE Trans Veh Technol 60(6):2519

    Article  Google Scholar 

  32. Koley S, Mirza V, Islam S, Mitra D (2015) Gradient-based real-time spectrum sensing at low snr. IEEE Commun Lett 19(3): 391

    Article  Google Scholar 

  33. Yin S, Chen D, Zhang Q, Liu M, Li S (2012) Mining spectrum usage data: a large-scale spectrum measurement study. IEEE Trans Mob Comput 11(6):1033

    Article  Google Scholar 

  34. Tranter WH, Rappaport TS, Kosbar KL, Shanmugan KS (2004) Principles of communication systems simulation with wireless applications, vol 1. Prentice Hall, New Jersey

  35. Candy JV (2009) Bayesian signal processing: classical, modern, and particle filtering methods, vol 1. Wiley-Interscience

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipen Bepari.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bepari, D., Koley, S. & Mitra, D. Empirical validation and performance of duty cycle–based DTMC model in channel estimation. Ann. Telecommun. 75, 229–240 (2020). https://doi.org/10.1007/s12243-019-00747-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12243-019-00747-1

Keywords

Navigation