Progressive hologram transmission using a view-dependent scalable compression scheme

Abstract

Over the last few years, holography has been emerging as an alternative to stereoscopic imaging since it provides users with the most realistic and comfortable three-dimensional (3D) experience. However, high-quality holograms enabling a free-viewpoint visualization contain tremendous amount of data. Therefore, a user willing to access to a remote hologram repository would face high downloading time, even with high speed networks. To reduce transmission time, a joint viewpoint-quality scalable compression scheme is proposed. At the encoder side, the hologram is first decomposed into a sparse set of diffracted light rays using Matching Pursuit over a Gabor atoms dictionary. Then, the atoms corresponding to a given user’s viewpoint are selected to form a sub-hologram. Finally, the pruned atoms are sorted and encoded according to their importance for the reconstructed view. The proposed approach allows a progressive decoding of the sub-hologram from the first received atom. Streaming simulations for a moving user reveal that our approach outperforms conventional scalable codecs such as scalable H.265 and enables a practical streaming with a better quality of experience.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    Leith EN, Upatnieks J (1962) Reconstructed wavefronts and communication theory. JOSA 52(10):1123–1130

    Article  Google Scholar 

  2. 2.

    Goodman JW, Lawrence RW (1967) Digital image formation from electronically detected holograms. Appl Phys Lett 11(3):77–79

    Article  Google Scholar 

  3. 3.

    Kim MK (2010) Principles and techniques of digital holographic microscopy. SPIE Reviews 1(1):018005

    Google Scholar 

  4. 4.

    Murata S, Yasuda N (2000) Potential of digital holography in particle measurement. Opt Laser Technol 32(7-8):567–574

    Article  Google Scholar 

  5. 5.

    Javidi B, Nomura T (2000) Securing information by use of digital holography. Opt Lett 25(1):28–30

    Article  Google Scholar 

  6. 6.

    Hesselink L, Orlov SS, Bashaw MC (2004) Holographic data storage systems. Proc IEEE 92(8):1231–1280

    Article  Google Scholar 

  7. 7.

    Yaraş F, Kang H, Onural L (2010) State of the art in holographic displays: a survey. J Disp Technol 6(10):443–454

    Article  Google Scholar 

  8. 8.

    Blinder D, Ahar A, Bettens S, Birnbaum T, Symeonidou A, Ottevaere H, Schretter C, Schelkens P (2019) Signal processing challenges for digital holographic video display systems. Signal Processing: Image Communication 70:114–130

    Google Scholar 

  9. 9.

    Hoffman DM, Girshick AR, Akeley K, Banks MS (2008) Vergence–accommodation conflicts hinder visual performance and cause visual fatigue. J Vis 8(3):33–33

    Article  Google Scholar 

  10. 10.

    Blinder D, Bruylants T, Ottevaere H, Munteanu A, Schelkens P (2014) Jpeg 2000-based compression of fringe patterns for digital holographic microscopy. Opt Eng 53(12):123102

    Article  Google Scholar 

  11. 11.

    Xing Y, Pesquet-Popescu B, Dufaux F (2013) Compression of computer generated phase-shifting hologram sequence using avc and hevc. In: Applications of digital image processing XXXVI. International Society for Optics and Photonics, vol 8856, p 88561M

  12. 12.

    Wiegand T, Sullivan GJ, Bjontegaard G, Luthra A (2003) Overview of the h. 264/avc video coding standard. IEEE Trans Circuits Syst Video Technol 13(7):560–576

    Article  Google Scholar 

  13. 13.

    Sullivan GJ, Ohm J-R, Han W-J, Wiegand T (2012) Overview of the high efficiency video coding (hevc) standard. IEEE Trans Circuits Syst Video Technol 22(12):1649–1668

    Article  Google Scholar 

  14. 14.

    Peixeiro JP, Brites C, Ascenso J, Pereira F (2018) Holographic data coding: benchmarking and extending hevc with adapted transforms. IEEE Transactions on Multimedia 20(2):282– 297

    Article  Google Scholar 

  15. 15.

    Shortt AE, Naughton TJ, Javidi B (2006) Compression of digital holograms of three-dimensional objects using wavelets. Opt Express 14(7):2625–2630

    Article  Google Scholar 

  16. 16.

    Cheremkhin PA, Kurbatova EA (2017) Compression of digital holograms using 1-level wavelet transforms, thresholding and quantization of wavelet coefficients. In: Digital holography and three-dimensional imaging. Optical Society of America, pp W2A–38

  17. 17.

    Le TB, Ali Z, Quang PD, Park J-H, Kim N (2011) Compression of digital hologram for three-dimensional object using wavelet-bandelets transform. Opt Express 19(9):8019–8031

    Article  Google Scholar 

  18. 18.

    Xing Y, Kaaniche M, Pesquet-Popescu B, Dufaux F (2014) Vector lifting scheme for phase-shifting holographic data compression, vol 53

  19. 19.

    Xing Y, Kaaniche M, Pesquet-Popescu B, Dufaux F (2015) Adaptive nonseparable vector lifting scheme for digital holographic data compression. Appl opt 54(1):A98–A109

    Article  Google Scholar 

  20. 20.

    Liebling M, Blu T, Unser M (2003) Fresnelets: new multiresolution wavelet bases for digital holography. IEEE Trans Image Process 12(1):29–43

    MathSciNet  Article  Google Scholar 

  21. 21.

    Darakis E, Soraghan JJ (2006) Use of fresnelets for phase-shifting digital hologram compression. IEEE Trans Image Process 15(12):3804–3811

    MathSciNet  Article  Google Scholar 

  22. 22.

    Viswanathan K, Gioia P, Morin L (2013) Wavelet compression of digital holograms: towards a view-dependent framework. In: Applications of digital image processing XXXVI. International Society for Optics and Photonics, , vol 8856, p 88561N

  23. 23.

    El Rhammad A, Gioia P, Gilles A, Cagnazzo M, Pesquet-Popescu B (2018) Color digital hologram compression based on matching pursuit. Appl Opt 57(17):4930–4942

    Article  Google Scholar 

  24. 24.

    Blinder D, Schretter C, Ottevaere H, Munteanu A, Schelkens P (2018) Unitary transforms using time-frequency warping for digital holograms of deep scenes. IEEE Trans Comput Imaging 4(2):206–218

    MathSciNet  Article  Google Scholar 

  25. 25.

    Taubman D, Marcellin M (2012) JPEG2000 image compression fundamentals, standards and practice: image compression fundamentals, standards and practice, vol 642, Springer Science & Business Media

  26. 26.

    McCanne S, Jacobson V, Vetterli M (1996) Receiver-driven layered multicast. ACM SIGCOMM Computer Communication Review 26(4):117–130

    Article  Google Scholar 

  27. 27.

    Ohm J-R (2005) Advances in scalable video coding. Proc IEEE 93(1):42–56

    Article  Google Scholar 

  28. 28.

    André T, Cagnazzo M, Antonini M, Barlaud M (2007) Jpeg2000-compatible scalable scheme for wavelet-based video coding. J Image Video Process 2007(1):9–9

    Google Scholar 

  29. 29.

    Lee D-H, Sim J-Y, Kim C-s, Lee S-U (2011) Viewing angle dependent coding of digital holograms. In: Signal Processing Conference, 2011 19th European, IEEE, pp 1367–1371

  30. 30.

    Seo Y-H, Lee Y-H, Yoo J-S, Kim D-W (2013) Scalable hologram video coding for adaptive transmitting service. Appl Opt 52(1):A254–A268

    Article  Google Scholar 

  31. 31.

    El Rhammad A, Gioia P, Gilles A, Cagnazzo M, Pesquet-Popescu B View-dependent compression of digital hologram based on matching pursuit. In: Optics, photonics, and digital technologies for imaging applications V. International Society for Optics and Photonics, 2018, vol 10679, p 106790L

  32. 32.

    Yamaguchi I, Zhang T (1997) Phase-shifting digital holography. Opt lett 22(16):1268–1270

    Article  Google Scholar 

  33. 33.

    Slinger C, Cameron C, Stanley M (2005) Computer-generated holography as a generic display technology. Computer 38(8):46–53

    Article  Google Scholar 

  34. 34.

    Gilles A, Gioia P, Cozot R, Morin L (2016) Computer generated hologram from multiview-plus-depth data considering specular reflections. In: 2016 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), pp 1–6

  35. 35.

    Symeonidou A, Blinder D, Munteanu A, Schelkens P (2015) Computer-generated holograms by multiple wavefront recording plane method with occlusion culling. Opt Express 23(17):22149–22161

    Article  Google Scholar 

  36. 36.

    Hariharan P, Hariharan P (1996) Optical holography: principles, techniques and applications. Cambridge University Press

  37. 37.

    Gerchberg RW, A Saxton WO (1971) A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 35:237–250,11

    Google Scholar 

  38. 38.

    Goodman JW (2005) Introduction to Fourier Optics. Roberts and Company Publishers

  39. 39.

    Yoshikawa H, Yamaguchi T (2009) Computer-generated holograms for 3d display. Chinese Opt Lett 7 (12):1079–1082

    Article  Google Scholar 

  40. 40.

    Lederer S, Müller C, Timmerer C (2012) Dynamic adaptive streaming over http dataset. In: Proceedings of the 3rd Multimedia Systems Conference, ACM, pp 89–94

  41. 41.

    Lee TS (1996) Image representation using 2d gabor wavelets. IEEE Transactions on Pattern Analysis and Machine Intelligence 18(10):959–971

    Article  Google Scholar 

  42. 42.

    Zhong J, Weng J, Hu C (2009) Reconstruction of digital hologram by use of the wavelet transform. In: Digital holography and three-dimensional imaging. Optical Society of America, p DWB16

  43. 43.

    Mallat SG, Zhang Z (1993) Matching pursuits with time-frequency dictionaries. IEEE Trans Signal Process 41(12):3397–3415

    Article  Google Scholar 

  44. 44.

    Schwerdtner A, Häussler R, Leister N (2008) Large holographic displays for real-time applications. In: Practical holography XXII: materials and applications. International Society for Optics and Photonics, vol 6912. p 69120T

  45. 45.

    Bjontegaard G (2001) Calculation of average PSNR differences between RD-curves. In: VCEG Meeting, Austin, USA

  46. 46.

    Boyce JM, Ye Y, Chen J, Ramasubramonian AK (2016) Overview of shvc: scalable extensions of the high efficiency video coding standard. IEEE Trans Circ Syst Video Technol 26(1):20–34

    Article  Google Scholar 

  47. 47.

    Gilles A, Gioia P, Cozot R, Morin L (2016) Hybrid approach for fast occlusion processing in computer-generated hologram calculation. Appl Opt 55(20):5459–5470

    Article  Google Scholar 

  48. 48.

    Schelkens P, Ebrahimi T, Gilles A, Gioia P, Kwan-Jung O, Pereira F, Perra C, Pinheiro AMG (2019) Jpeg pleno: providing representation interoperability for holographic applications and devices. ETRI J 41(1):93–108

    Article  Google Scholar 

  49. 49.

    Garg V (2010) Wireless communications & networking. Elsevier

Download references

Acknowledgements

This work has been achieved within the Institute of Research and Technology b-com, dedicated to digital technologies.

Funding

It has been funded by the French government through the National Research Agency (ANR) Investment referenced ANR-A0-AIRT-07.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Anas El Rhammad.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

El Rhammad, A., Gioia, P., Gilles, A. et al. Progressive hologram transmission using a view-dependent scalable compression scheme. Ann. Telecommun. 75, 201–214 (2020). https://doi.org/10.1007/s12243-019-00741-7

Download citation

Keywords

  • Digital holography
  • Diffraction
  • Compression
  • Gabor wavelets
  • Matching pursuit
  • Streaming
  • Scalability