Abstract
Two international guidelines/standards for human protection from electromagnetic fields are on-going revision. Most attention has been paid to the revisions above 3 or 10 GHz where the new fifth generation wireless communication system will be deployed soon. The frequency of 3 or 10 GHz is the transition frequency at which the metric of the basic restriction is changed from the specific absorption rate to the power density. Rationales for the metrics above 3 or 10 GHz were not well established when the current guidelines/standards were published. In this review, we focused on three issues to be considered in the next revision of the exposure guidelines: (i) the averaging area of the power density, (ii) the transition frequency at which the metric is changed from the specific absorption rate to the power density, and (iii) the exposure averaging time. In addition, some remarks and trends on related product safety will also be reviewed and discussed briefly.
Similar content being viewed by others
References
ICNIRP (1998) Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). Health Phys 74:494–521
IEEE-C95.1 (2005) IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz. In: Ed. NY, USA: IEEE
Colombi D, Thors B, and Tornevik C (2015) "Implications of EMF exposure limits on output power levels for 5G devices above 6 GHz" IEEE Antennas & Wireless Propagat. Lett.14:1247–1249
Foster KR, Ziskin MC, Balzano Q (2016) Thermal response of human skin to microwave energy: a critical review. Health Phy 111:528–541
Morimoto R, Laakso I, De Santis V, Hirata A (2016) Relationship between peak spatial-averaged specific absorption rate and peak temperature elevation in human head in frequency range of 1-30 GHz. Phys Med Biol 61:5406–5425
Thors B, Colombi D, Ying Z, Bolin T, Törnevik C (2016) Exposure to RF EMF from array antennas in 5G mobile communication equipment. IEEE Access 4:7469–7478
He W, Xu B, Gustafsson M, Ying Z, He S (2018) RF compliance study of temperature elevation in human head model around 28 GHz for 5G user equipment application: simulation analysis. IEEE Access 6:830–838
Foster KR, Colombi D (2017) Thermal response of tissue to RF exposure from canonical dipoles at frequencies for future mobile communication systems. Electron Lett 53:360–362
Foster KR, Ziskin MC, Balzano Q (2017) Thermal modeling for the next generation of radiofrequency exposure limits: commentary. Health Phys 113:41–53
Kojima M, Hanazawa M, Yamashiro Y, Sasaki H, Watanabe S, Taki M, Suzuki Y, Hirata A, Kamimura Y, Sasaki K (2009) Acute ocular injuries caused by 60-ghz millimeter-wave exposure. Health Phys 97:212–218
Sasaki K, Sakai T, Nagaoka T, Wake K, Watanabe S, Kojima M, Hasanova N, Sasaki H, Sasaki K, Suzuki Y (2014) Dosimetry using a localized exposure system in the millimeter-wave band for in vivo studies on ocular effects. IEEE Trans Microwave Theory & Tech 62:1554–1564
Kojima M, Suzuki Y, Tsai C-Y, Sasaki K, Wake K, Watanabe S, Taki M, Kamimura Y, Hirata A, Sasaki K (2015) Characteristics of ocular temperature elevations after exposure to quasi-and millimeter waves (18-40 GHz). J Infrared Millimeter Terahertz Waves 36:390–399
Alekseev S, Radzievsky A, Szabo I, Ziskin M (2005) Local heating of human skin by millimeter waves: effect of blood flow. Bioelectromagnetics 26:489–501
Alekseev S, Ziskin M (2003) "local heating of human skin by millimeter waves: a kinetics study". Bioelectromagnetics: Journal of the Bioelectromagnetics Society, The Society for Physical Regulation in Biology and Medicine. Eur Bioelectromagnetics Assoc 24:571–581
Walters TJ, Blick DW, Johnson LR, Adair ER, Foster KR (2000) Heating and pain sensation produced in human skin by millimeter waves: comparison to a simple thermal model. Health Phys 78:259–267
"Resolution COM6/20 " in World Radiocommunication Conference, 2015
Drossos A, Santomaa V, Kuster N (2000) The dependence of electromagnetic energy absorption upon human head tissue composition in the frequency range of 300-3000 MHz. IEEE Trans. Microwave Theory Tech 48:1988–1995
A. Taflove and S. Hagness, "Computational electrodynamics: the finite-difference time-domain method. 3rd Ed.," 2003
Gabriel S, Lau RW, Gabriel C (1996) The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys Med Biol 41:2271–2293
Sasaki K, Wake K, Watanabe S (2014) Development of best fit Cole-Cole parameters for measurement data from biological tissues and organs between 1 MHz and 20 GHz. Radio Sci 49:459–472
Sasaki K, Wake K, Watanabe S (2014) Measurement of the dielectric properties of the epidermis and dermis at frequencies from 0.5 GHz to 110 GHz. Phys Med Biol 59:4739–4747
Ziskin MC, Alekseev SI, Foster KR, and Balzano Q, "Tissue models for RF exposure evaluation at frequencies above 6 GHz". Bioelectromagnetics, pp. n/a-n/a
Kanezaki A, Hirata A, Watanabe S, Shirai H (2009) Effects of dielectric permittivities on skin heating due to millimeter wave exposure. Biomed Eng Online 8:20
Kanezaki A, Hirata A, Watanabe S, Shirai H (2010) Parameter variation effects on temperature elevation in a steady-state, one-dimensional thermal model for millimeter wave exposure of one-and three-layer human tissue. Phys Med Biol 55:4647–4659
Pennes HH (1948) Analysis of tissue and arterial blood temperatures in the resting human forearm. J Appl Physiol 1:93–122
Hirata A, Shiozawa T (2003) Correlation of maximum temperature increase and peak SAR in the human head due to handset antennas. IEEE Trans Microwave Theory Tech 51:1834–1841
Duck FA (1990) Physical properties of tissues: a comprehensive reference book. Academic Press
Fiala D, Lomas KJ, Stohrer M (2001) Computer prediction of human thermoregulatory and temperature responses to a wide range of environmental conditions. Int J Biometeorol 45:143–159
Funahashi D, Ito T, Hirata A, Iyama T, Onishi T (2018) Averaging area of incident power density for human exposure from patch antenna arrays. IEICE Trans Electron 101:644–646
Hashimoto Y, Hirata A, Morimoto R, Aonuma S, Laakso I, Jokela K, Foster KR (2017) On the averaging area for incident power density for human exposure limits at frequencies over 6 GHz. Phys Med Biol 62:3124–3138
Morimoto R, Hirata A, Laakso I, Ziskin MC, Foster KR (2017) Time constants for temperature elevation in human models exposed to dipole antennas and beams in the frequency range from 1 to 30 GHz. Phys Med Biol 62:1676–1699
IEC62209–1, "Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Part 1: Devices used next to the ear (Frequency range of 300 MHz to 6 GHz)," ed. Geneva, 2016
IEC62209–2, "Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)," ed, 2010
IEC TC63170, "Measurement procedure for the evaluation of power density related to human exposure to radio frequency fields from wireless communication devices operating between 6 GHz and 100 GHz," ed, 2018 (to be published)
Hirata A, Fujimoto M, Asano T, Wang J, Fujiwara O, Shiozawa T (2006) Correlation between maximum temperature increase and peak SAR with different average schemes and masses. IEEE Trans. Electromagnet Compat 48:569–577
Hirata A, Shirai K, Fujiwara O (2008) On averaging mass of SAR correlating with temperature elevation due to a dipole antenna. Prog Electromagn Res 84:221–237
Hirata A, Fujiwara O (2009) The correlation between mass-averaged SAR and temperature elevation in the human head model exposed to RF near-fields from 1 to 6 GHz. Phys Med Biol 54:7227–7238
McIntosh RL, Anderson V (2010) SAR versus Sinc: what is the appropriate RF exposure metric in the range 1–10 GHz? Part II: using complex human body models. Bioelectromagnetics 31:467–478
Razmadze A, Shoshiashvili L, Kakulia D, Zaridze R, Bit-Babik G, Faraone A (2009) Influence of specific absorption rate averaging schemes on correlation between mass-averaged specific absorption rate and temperature rise. Electromagnetics 29:77–90
Sasaki K, Mizuno M, Wake K, Watanabe S (2017) Monte Carlo simulations of skin exposure to electromagnetic field from 10 GHz to 1 THz. Phys Med Biol 62:6993–7010
Wang J, Fujiwara O (1999) FDTD computation of temperature rise in the human head for portable telephones. Microwave Theory Techniques, IEEE Transactions on 47:1528–1534
Van Leeuwen GMJ, Lagendijk JJW, Van Leersum BJAM, Zwamborn A, Hornsleth S, Kotte A (1999) Calculation of change in brain temperatures due to exposure to a mobile phone. Phys Med Biol 44:2367–2379
Bernardi P, Cavagnaro M, Pisa S, Piuzzi E (2000) Specific absorption rate and temperature increases in the head of a cellular-phone user. IEEE Trans Microwave Theory Tech 48:1118–1126
Samaras T, Kalampaliki E, Sahalos JN (2007) Influence of Thermophysiological parameters on the calculations of temperature rise in the head of Mobile phone users. IEEE Trans Electromag Compat 49:936–939
Ibrahiem A, Dale C, Tabbara W, Wiart J (2005) Analysis of the temperature increase linked to the power induced by RF source. Prog Electromagn Res 52:23–46
Hirata A, Morita M, Shiozawa T (2003) Temperature increase in the human head due to a dipole antenna at microwave frequencies. IEEE Trans Electromagnet Compat 45:109–116
Wessapan T, Srisawatdhisukul S, Rattanadecho P (2012) Specific absorption rate and temperature distributions in human head subjected to mobile phone radiation at different frequencies. Int J Heat Mass Transf 55:347–359
Kunter FÇ, Gunduz C, and Seker SS, "Computation of SAR and temperature values in the human head due to 2G, 3G, 4G mobile wireless systems". J. Aeronautics & Space Tech., vol. 11, pp. 1–6, 2018
Cvetković M, Poljak D, Hirata A (2016) The electromagnetic-thermal dosimetry for the homogeneous human brain model. Eng Anal Bound Elem 63:61–73
Kodera S, Gomez-Tames J, Hirata A (2018) Temperature elevation in the human brain and skin with thermoregulation during exposure to RF energy. Biomed Eng Online 17(1)
ICNIRP (2006) ICNIRP statement on far infrared radiation exposure. Health Phys 91:630–645
Laakso I, Morimoto R, Heinonen J, Jokela K, Hirata A (2017) Human exposure to pulsed fields in the frequency range from 6 to 100 GHz. Phys Med Biol 62:6980–6992
Laakso I, Hirata A (2012) Reducing the staircasing error in computational dosimetry of low-frequency electromagnetic fields. Phys Med Biol 57:N25–N34
Reilly JP, Hirata A (2016) Low-frequency electrical dosimetry: research agenda of the IEEE international committee on electromagnetic safety. Phys Med Biol 59
Gomez-Tames J, Laakso I, Haba Y, Hirata A, Poljak D, Yamazaki K (2018) Computational artifacts of the in situ electric field in anatomical models exposed to low-frequency magnetic field. IEEE Trans Electromagn Compat 60:589–597
Acknowledgements
The authors would like to thank Dr. Teruo Onishi (NTT DOCOMO. Inc) for his helpful comments on product safety.
Funding
This study was partly supported by the Ministry of Internal Affairs and Communications.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Hirata, A., Funahashi, D. & Kodera, S. Setting exposure guidelines and product safety standards for radio-frequency exposure at frequencies above 6 GHz: brief review. Ann. Telecommun. 74, 17–24 (2019). https://doi.org/10.1007/s12243-018-0683-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12243-018-0683-y